
Enabling Refinable Cross-Host
Attack Investigation with Efficient
Data Flow Tagging and Tracking

Yang Ji, Sangho Lee, Mattia Fazzini, Joey Allen, Evan Downing,

Taesoo Kim, Alessandro Orso, and Wenke Lee

USENIX Security Symposium 2018

August 17, 2018

Advanced attacks involve multiple hosts

2

Goal of investigation:
accurate, efficient, supporting multi-hosts

client

server

attacker

A B C

Answer queries:
• What data were leaked to the attacker?
• Was B leaked?
• How was A leaked step in step?

3

A

Distributed setting, e.g., P2P network

4

Analyzing data flow across hosts is hard

• False positive dependencies

• Data dependencies across multiple hosts

• Amplified analysis cost

5

Resolving false positive dependencies

System-wide
recording

Coarse-level
data pruning

Selective
replaying &
dynamic taint

• Using dynamic taint analysis at runtime
• Suffering from high overhead
• Cloudfence (RAID ‘13), TaintExchange (IWSEC ‘12)

• Refinable attack investigation (We take this direction)
• Record replay + dynamic taint analysis
• Arnold (OSDI '14), RAIN (CCS '17)

6

Analyzing data flow across hosts is hard

• False positive dependencies
• Record replay + dynamic information flow tracking (DIFT)

• Data dependencies across multiple hosts
• Enable tag-dependency-free, independent and parallel replays

• Amplified analysis cost
• Optimize the analysis time and memory cost

7

Our approach
• Enable independent and parallel replayed DIFT

• Reduce the memory cost of DIFT by optimally allocating tag size
for each DIFT task

8

System-wide
recording

Coarse-level
data pruning

Selective
replaying &
dynamic taint

Selective
replaying &
dynamic taint

RTAG

DIFT@replay

DIFT@replay

Overview

Tag Association Tag Allocation Tag Switch

RTAG

DIFT@replay

DIFT@replay

Tag Overlay

9

Gitpwnd data exfiltration

10

C

B

P3

A

Write (T8)

Read (T5)

Read (T7)
Write (T9)

P2

D Recv (T3) Write (T4)

Write (T6)

@ 10.0.0.1:
P1: git pack
E: /tmp/results
D: /tmp/objects

P1

E

Read (T1)
Write (T2)

client
server

@ 10.0.0.2:
P2: scp
P3: server-hook
A: .git/archived
B: /tmp/objects.1
C: /tmp/objects.2s s h k e y …

0 1 0 0 1 0 …How does ‘ssh-key’ go to ‘archived’ ?

Length of global tag

11

s s h k e y …

Global Tag

Host MAC address

Inode, dev, gen

offset

version

208 bits

Tag allocation by analyzing syscall trace
offset data

0 ‘s’

1 ‘s’

2 ‘h’

3 ‘k’

4 ‘e’

5 'y'
Offset data

0 0xaa

1 0xb3

2 0xfa

3 0x19

read

write

offset data

6 ‘m’

7 ‘o’

8 ‘r’

read

Git pack Local tag: 0x0–0x5
208bits → 3 bits

12

Comparison of tag sizes with previous
systems

13

Tag switch at IO syscall entry and exit
during DIFT

Local

offset key

0 0x0

1 0x1

2 0x2

Local

offset key

0 0x1

1 0x1

2 0x0

Global

offset key value

0 U9

1 U10

2 U11

DIFT
U1

U1

U0

Global

offset key

0 U0 (208bit)

1 U1

2 U2

14

Tag association

• Need to link the tag propagation between two hosts via socket
communication

• Support both TCP and UDP packets with tag association but in
different ways
• TCP: counter-based

• UDP: tag-embedding-based

15

TCP (order-preserving transmission)
Syscall Data offset

send

0

1

2

3

send
0

1

send

0

1

2

3

4

5

Syscall Data offset

read

0

1

2

read

0

1

2

read

0

1

2

read

0

1

2

Offset in tag

0x0

0x1

0x2

0x3

0x4

0x5

0x6

0x7

0x8

0x9

0xA

0xB

Offset in tag

0x0

0x1

0x2

0x3

0x4

0x5

0x6

0x7

0x8

0x9

0xA

0xB
16

UDP (datagram transmission)

sendmsg()

checksum comp

fragmentation

IP packet send

recvmsg()

checksum verify

De-fragmentation

IP packet recv

Tag embedding Tag extracting

In-kernel socket handling stack

17

Tag overlay on top of provenance graph

C

B

P3

A

Write (T8)

Read (T5)

Read (T7)
Write (T9)

P2

Recv (T3) Write (T4)

Write (T6)

18

D

P1

E

Read (T1)
Write (T2)

GTK GTV

A:v1 B

A:v2 C

GTK GTV

B D:v1GTK GTV

C D:v2

GTK GTV

D:v1 E

D:v2 E

19

GTK GTV

E …

20

GTK GTV

A:v1 B

A:v2 C

GTK GTV

B D:v1GTK GTV

C D:v2

GTK GTV

D:v1 E

D:v2 E
GTK GTV

E …

Example of backward query from A:v1

Platform and dependencies

• Run on Ubuntu 12.04 LTS 32-bit and 64-bit

• Use libdft as DIFT propagation engine (32-bit and 64-bit)

• Use Neo4j for graph-based reachability analysis

• Use PostgreSql for tag storage

21

Evaluation

• Effectiveness

• Analysis overhead

• Runtime overhead

22

Attack Ex query Accurate?

GitPwnd (git, gitolite) Forward: /etc/passwd √

SQL-I (1) (Firefox, Apache) Backward: payroll record √

SQL-I (2) (same as above) Backward: dump file √

CSRF (same as above) Forward: exploit html √

XSS (same as above)
Point-to-point: html –
attack_host

√

P2P (6 hosts, gnutella) Forward: mp4@1st node √

Effectiveness

23

Analysis time reduction ~90%

24

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

GitPwnd SQL-I (1) SQL-I (2) CSRF XSS P2P

Serialized RTAG

Runtime overhead: 4.84% SPEC CPU2006

90%

95%

100%

105%

110%

115%

120%

125%

g
cc

b
zip

2

p
e
rlb

e
n

ch

ca
lcu

lix

g
a
m

e
ss

b
w

a
ve

s

sje
n

g

o
m

n
e
tp

p

m
cf

a
sta

r

h
2
6
4
re

f

h
m

m
e
r

xa
la

n
cb

m
k

g
o

b
m

k

lib
q

u
a
n

tu
m

sp
h

in
x3

m
ilc

ze
u

sm
p

g
ro

m
a
cs

le
slie

3
d

n
a
m

d

lb
m

d
e
a
lII

so
p

le
x

p
o

vra
y

G
e
m

sFD
T
D

to
n

to

w
rf

G
E
O

M
E
A

N 25

Memory cost reduction: 50%–99%

74%

99%
94%

99%

NA NA

60%
55% 53% 52%

56%

68%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

git-core ssh cli-hook curl Firefox Apache

w/ Dytan w/ Dtracker
26

Network Impact: bandwidth <0.5% reduction

27

98.0%

98.5%

99.0%

99.5%

100.0%

100.5%

TCP
Window 128KB

TCP
Window 256KB

TCP
Window 512KB

UDP
Buffer 512B

UDP
Buffer 8KB

UDP
Buffer 128KB

Original RTAG

Network impact: Round-trip-time <0.05%
increase

28

99.70%

99.75%

99.80%

99.85%

99.90%

99.95%

100.00%

100.05%

TCP
Window 128KB

TCP
Window 256KB

TCP
Window 512KB

UDP
Buffer 512B

UDP
Buffer 8KB

UDP
Buffer 128KB

Original RTAG

Conclusion

• RTAG enables the cross-host refinable attack investigation
• Decouple the tag dependency from the replayed DIFT
• Optimally allocate tags for each DIFT based on reachability analysis

• RTAG achieves good performance
• Runtime: run with negligible overhead (<5%)

• Analysis: reduce analysis time cost by 60%–90%, memory cost by up to 90%

29

Back up slides

30

Tag1
Tag2

recv()

send()

Process1@10.0.0.1

Process2@10.0.0.2

Tag3 Tag4

31

Example of serialization due to tag
dependencies

Tag1 Tag2

recv()

send()

Process1@10.0.0.1

Process2@10.0.0.2

Tag3 Tag4

wait

wait wait

wait

waiting for recv()

Because replayed processes are not
synchronized

32

client-hook

git pack

ssh

S1 S2 S3

R1

sshd

git unpack

O1

scp

client server attacker

git commit

R2 O2

33

client-hook

git pack

ssh

S1 S2 S3

R1

sshd

git unpack

O1

scp

client server attacker

git commit

R2 O2

Answer queries: • What data were leaked to the attacker?
• Was S2 leaked?
• How was S1 leaked step in step? 34

