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Advanced attacks involve multiple hosts
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Goal of investigation: 
accurate, efficient, supporting multi-hosts 



client

server

attacker

A B C

Answer queries:
• What data were leaked to the attacker?
• Was B leaked?
• How was A leaked step in step?

3

A



Distributed setting, e.g., P2P network
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Analyzing data flow across hosts is hard

• False positive dependencies

• Data dependencies across multiple hosts

• Amplified analysis cost
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Resolving false positive dependencies

System-wide 
recording

Coarse-level 
data pruning

Selective 
replaying  & 
dynamic taint

• Using dynamic taint analysis at runtime
• Suffering from high overhead
• Cloudfence (RAID ‘13), TaintExchange (IWSEC ‘12)

• Refinable attack investigation (We take this direction)
• Record replay + dynamic taint analysis
• Arnold (OSDI '14), RAIN (CCS '17)
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Analyzing data flow across hosts is hard

• False positive dependencies
• Record replay + dynamic information flow tracking (DIFT)

• Data dependencies across multiple hosts
• Enable tag-dependency-free, independent and parallel replays 

• Amplified analysis cost
• Optimize the analysis time and memory cost
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Our approach
• Enable independent and parallel replayed DIFT 

• Reduce the memory cost of DIFT by optimally allocating tag size 
for each DIFT task
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Overview

Tag Association Tag Allocation Tag Switch

RTAG

DIFT@replay

DIFT@replay

Tag Overlay
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Gitpwnd data exfiltration

10

C

B

P3

A
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Read (T5)

Read (T7)
Write (T9)

P2

D Recv (T3) Write (T4)

Write (T6)

@ 10.0.0.1:
P1: git pack
E: /tmp/results
D: /tmp/objects

P1

E

Read (T1)
Write (T2)

client
server

@ 10.0.0.2:
P2: scp
P3: server-hook
A: .git/archived
B: /tmp/objects.1
C: /tmp/objects.2s s h k e y …

0 1 0 0 1 0 …How does ‘ssh-key’ go to ‘archived’ ? 



Length of global tag
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s s h k e y …

Global Tag

Host MAC address

Inode, dev, gen

offset

version

208 bits



Tag allocation by analyzing syscall trace
offset data

0 ‘s’

1 ‘s’

2 ‘h’

3 ‘k’

4 ‘e’

5 'y'
Offset data

0 0xaa

1 0xb3

2 0xfa

3 0x19

read

write

offset data

6 ‘m’

7 ‘o’

8 ‘r’

read

Git pack Local tag: 0x0–0x5
208bits → 3 bits
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Comparison of tag sizes with previous 
systems
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Tag switch at IO syscall entry and exit 
during DIFT
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Tag association

• Need to link the tag propagation between two hosts via socket 
communication

• Support both TCP and UDP packets with tag association but in
different ways
• TCP: counter-based

• UDP: tag-embedding-based
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TCP (order-preserving transmission)
Syscall Data offset
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UDP (datagram transmission)

sendmsg()

checksum comp

fragmentation

IP packet send

recvmsg()

checksum verify

De-fragmentation

IP packet recv

Tag embedding Tag extracting

In-kernel socket handling stack
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Tag overlay on top of provenance graph
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GTK GTV

A:v1 B

A:v2 C

GTK GTV

B D:v1GTK GTV

C D:v2

GTK GTV

D:v1 E

D:v2 E
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GTK GTV

E …
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GTK GTV

A:v1 B

A:v2 C

GTK GTV

B D:v1GTK GTV

C D:v2

GTK GTV

D:v1 E

D:v2 E
GTK GTV

E …

Example of backward query from A:v1



Platform and dependencies

• Run on Ubuntu 12.04 LTS 32-bit and 64-bit

• Use libdft as DIFT propagation engine (32-bit and 64-bit)

• Use Neo4j for graph-based reachability analysis

• Use PostgreSql for tag storage
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Evaluation

• Effectiveness

• Analysis overhead

• Runtime overhead
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Attack Ex query Accurate?

GitPwnd (git, gitolite) Forward: /etc/passwd √

SQL-I (1) (Firefox, Apache) Backward: payroll record √

SQL-I (2) (same as above) Backward: dump file √

CSRF (same as above) Forward: exploit html √

XSS (same as above)
Point-to-point: html –
attack_host

√

P2P (6 hosts, gnutella) Forward: mp4@1st node √

Effectiveness
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Analysis time reduction ~90%
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Runtime overhead: 4.84% SPEC CPU2006
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Memory cost reduction: 50%–99%
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Network Impact: bandwidth <0.5% reduction
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Network impact: Round-trip-time <0.05%
increase
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Conclusion

• RTAG enables the cross-host refinable attack investigation
• Decouple the tag dependency from the replayed DIFT
• Optimally allocate tags for each DIFT based on reachability analysis

• RTAG achieves good performance
• Runtime: run with negligible overhead (<5%)

• Analysis: reduce analysis time cost by 60%–90%, memory cost by up to 90%
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Back up slides
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Tag1
Tag2

recv()

send()

Process1@10.0.0.1

Process2@10.0.0.2

Tag3 Tag4
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Example of serialization due to tag 
dependencies



Tag1 Tag2

recv()

send()

Process1@10.0.0.1

Process2@10.0.0.2

Tag3 Tag4

wait

wait wait

wait

waiting for recv()

Because replayed processes are not 
synchronized
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client-hook

git pack

ssh

S1 S2 S3

R1

sshd

git unpack

O1

scp

client server attacker

git commit

R2 O2
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client-hook

git pack

ssh

S1 S2 S3

R1

sshd

git unpack

O1

scp

client server attacker

git commit

R2 O2

Answer queries: • What data were leaked to the attacker?
• Was S2 leaked?
• How was S1 leaked step in step? 34


