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ABSTRACT
In Android malware detection, recent work has shown that using con-
textual information of sensitive API invocation in the modeling of
applications is able to improve the classification accuracy. However,
the improvement brought by this context-awareness varies depend-
ing on how this information is used in the modeling. In this paper,
we perform a comprehensive study on the effectiveness of using the
contextual information in prior state-of-the-art detection systems.
We find that this information has been “over-used” such that a large
amount of non-essential metadata built into the models weakens the
generalizability and longevity of the model, thus finally affects the
detection accuracy. On the other hand, we find that the entrypoint
of API invocation has the strongest impact on the classification cor-
rectness, which can further improve the accuracy if being properly
captured. Based on this finding, we design and implement a light-
weight, circumstance-aware detection system, named “PIKADROID”
that only uses the API invocation and its entrypoint in the modeling.
For extracting the meaningful entrypoints, PIKADROID applies a
set of static analysis techniques to extract and sanitize the reachable
entrypoints of a sensitive API, then constructs a frequency model
for classification decision. In the evaluation, we show that this slim
model significantly improves the detection accuracy on a data set
of 23,631 applications by achieving an f-score of 97.41%, while
maintaining a false positive rating of 0.96%.
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1 INTRODUCTION
The Android operating system has become the most popular mobile
OS with two billion monthly active devices [24]. Unfortunately,
the popularity of the Android OS and its feature-rich environment
have made it a popular target for malicious developers. Sixteen
million new malware samples were identified in the final quarter
of 2017 alone [33]. In spite of the counter-measurements by the
Anti-Virus industry as well as Google, Android malware is still
widely active and making multi-million dollar profits. For example,
LokiBot, a banking trojan, has created over two million dollars in
revenue by attacking the customers of 121 international and domestic
banks [33].

Due to the significance and popularity of the Android OS, there
has been a large body of research for Android malware detection
[2, 3, 5, 7, 10, 11, 15, 16, 21, 31, 52, 53, 55]. Several prior ap-
proaches have tried to provide efficient and scalable malware detec-
tion by analyzing the permissions used by an application [15, 22, 55].
Unfortunately, the set of permissions only capture what capabili-
ties an application has but not how they are used so, they cannot
be used to accurately identify malware. Moreover, benign applica-
tions tend to request more permissions than necessary [14], which
causes a high false-positive rate. To address this, several systems
have proposed to instead check the usage of critical APIs in the An-
droid framework [2, 5, 21]. Using critical APIs provides a more
complete, fine-grained perspective of the application’s behavior
compared to permissions because APIs cover a more complete
set of sensitive information [39]. Also, APIs have one-to-one as-
sociations with each sensitive source while each permission usu-
ally includes more than one API capabilities. However, API-based
systems must distinguish between how sensitive APIs are used in
malicious verses benign applications. Therefore, prior approaches
prune out many sensitive APIs that are found to be common in
benign and malicious apps which affects the accuracy of classi-
fication. For instance, DroidAPIMiner[2] does not consider the
TelephonyManager.getDeviceID API to be sensitive because it is
used by benign and malicious apps with similar frequency. Including
APIs like this results in higher false negatives rates. Instead, we find
the lightweight context in which a behavior is executed helps reveal
the true intension. For example, when a user presses the cancel
button on a dialog, malicious applications are 11 times more likely
to access a device’s ID via the TelephonyManager.getDeviceID API
than benign ones. Leveraging such contextual information makes
the classification of APIs more accurate, which has the chance to
improve the malware detection accuracy.

Several prior works, such as AppContext [52] and Droidsift [53]
propose to embed the contextual factors of the API invocation in
the modeling and classification. For example, AppContext ties a
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variety of activation events, and behavioral information to the sensi-
tive API invocation, while Droidsift constructs a dependency graph
for modeling fine-grained contextual information. However, the
modeling of many contextual factors becomes challenging because
it requires intensive labeling effort and the detection accuracy is
degraded when too much non-essential contextual information is
included [41]. Additionally, it has been shown that context-based
systems, like AppContext, suffer from overfitting because they are
too tailored towards the training samples [51]. This issues makes
these models perform poorly on new samples of malware, espe-
cially from different time periods. To address this, leveraging an
abstraction-based approach to generalize program behavior has been
proposed. Prior work has shown this can reduce overfitting and
increase the lifetime of the trained model [31]. However, we find
that one limitation of abstracted-based approaches is that they in-
cur significant context loss which can reduce the performance of
the model. Through our experimental evaluation, we find that prior
abstraction-based approaches cannot maintain enough context to
identify malware that is near the decision boundary.

We rethink the necessity and effectiveness of using contextual
information and argue to reduce the amount of contextual factors
which are considered and focus only on the most influential factors
which we define as lightweight context. The goal of lightweight
context is to create a more generalizable, contextual representation
of the Android app which is less prone to overfitting, as this is a
limitation of prior context-based systems [52, 53]. We argue that
lightweight context can create this more generalizable representa-
tion of the behavior of an Android application which is not tailored
to a specific malware family. To validate this argument, we first
study the composition of contextual information extracted by exist-
ing approaches and evaluate their effectiveness in the modeling and
classification of Android applications. The results of our study show
that compared to other contextual factors used in prior work [52],
the entrypoint provides the most informative features for classifica-
tion. An entrypoint is defined as a callback that is defined by the
application, but called by the framework in response to some event
involving the user, the device, or the environment.

We implement a lightweight, context-aware malware detection
system for Android apps and evaluate it against previous state-of-the-
art detection systems to show the performance improvement using
datasets spanning multiple years. Our proposed system, PIKADROID,
uses lightweight context to achieve highly-accurate and efficient An-
droid malware detection. PIKADROID develops contextual aware-
ness by answering the question of how a sensitive API is invoked
in a much simplified way. PIKADROID leverages this awareness to
infer when sensitive behavior is being used inappropriately which
essentially distinguishes legitimate uses of sensitive behavior from
malicious intent. Specifically, PIKADROID discovers what Android
entrypoint is used to invoke the particular sensitive API, applies a set
of reachability and frequency analysis techniques for refining, and
then learns how to distinguish under what circumstances malicious
applications invoke sensitive behavior. By leveraging lightweight,
context-based Android malware detection, PIKADROID is capable
of detecting Android malware samples with a f-score of 97.41% and
a false positive rate of 0.96%. Next, we compare PIKADROID to
prior abstraction-based approaches and find that PIKADROID can

outperform prior approaches [31] in classifying malware samples
that are 1-5 years older than the training samples.

This paper makes the following major contributions:
• Case study of context-aware, detection approaches. We

study the effectiveness of existing context-aware, modeling
and classification approaches and show these models may
have too heavy contextual information which results in lower
accuracy and labeling complexity. Additionally, we find the
pair of entrypoint and sensitive API is the most informative
contextual feature for distinguishing legitimate and illegiti-
mate uses of sensitive behavior.
• A lightweight, context-aware approach. We build a light-

weight, context-aware system, PIKADROID, that considers
the probability of the sensitive behaviors conditioned on the
current entrypoint using reachability and frequency analysis.
• Comprehensive Evaluation. Our evaluation shows sizable

improvements of accuracy over existing approaches. We
show that PIKADROID achieves an f-score of 97.41% while
maintaining a false positive rating of 0.96% when detect-
ing malware from the same time period. Specifically, we
find that compared to prior frequency-based approaches like
DroidAPIMiner [2], PIKADROID achieves a 2.2x reduction in
false-positives on average. Next, we compare PIKADROID to
prior abstraction-based approaches and find that PIKADROID

outperforms prior approaches [31] in classifying malware
samples that are 1-5 years older than the training samples.

Paper Organization. The rest of the paper is organized as follows:
§2 discusses the motivation for lightweight context and provides a
background on the issues related to context-based systems. §3 and
§4 presents the design and implementation of PIKADROID respec-
tively. §5 discusses the dataset and §6 provides the results from our
extensive evaluations. Finally §7 discusses the related work and §8
concludes.

2 RETHINKING CONTEXTUAL AWARENESS
In this section, we motivate our work by demonstrating existing
issues related to context-based, malware detection systems [51–53].
Next, we demonstrate the benefits of lightweight context and its
ability to generalize an application’s behavior.

2.1 Less Effective Contextual Information
Some current context-based, malware detection systems embed an
app’s contextual information into a graph to be used later for classi-
fication [53]. One limitation of context, graph-based approaches is
they use too much contextual information and create unique features
that cause detection to be less effective. Because of this, dependency
graphs have been shown to be extremely effective at detecting similar
variants of the same malware-family, but they are not good at dis-
tinguishing the exact dependencies in a graph that define what truly
makes this behavior malicious. This leads to contextual-confusion,
which occurs when non-informative dependencies become interwo-
ven with the malware’s essential behavior.

2.1.1 Non-essential Dependencies. Essential dependencies
are the contextual dependencies that provide information related to
the malware’s core behavior, while residual dependencies are con-
textual dependencies that are non-essential to the malicious behavior
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Method Type Activity %
(Entrypoints)

Receiver %
(Entrypoints) Intent_params% Service %

(Entrypoints) Database % Device % UI %
(Entrypoints) Network %

CLASS_LOADING 47 8 3 13 4 7 12 1
REFLECTION_METHOD 39 5 10 3 7 9 8 10
ACCESS_COARSE_LOCATION 22 0 20 11 1 15 3 16
ACCESS_NETWORK_STATE 27 2 6 15 4 13 11 14
ACCESS_WIFI_STATE 34 9 9 21 0 7 3 9
BROADCAST_STICKY 43 2 2 30 0 0 10 0
CAMERA 68 0 0 0 0 0 20 0
CHANGE_WIFI_STATE 21 12 9 33 0 1 11 4
DISABLE_KEYGUARD 21 0 0 79 0 0 0 0
GET_ACCOUNTS 59 1 4 7 0 0 16 0
INTERNET 43 6 5 12 2 6 13 2
READ_PHONE_STATE 21 2 4 35 5 16 5 6
RECORD_AUDIO 32 1 0 63 0 0 3 0
RESTART_PACKAGES 51 5 3 6 1 3 12 0
VIBRATE 43 4 6 20 1 2 12 3
WAKE_LOCK 44 4 4 13 3 3 16 1
WRITE_SETTINGS 53 1 8 4 4 1 12 3

Table 1: A detailed report of the findings in our case study on contextual factors. This table describes the relation between sensitive API categories and
contextual factors. Each row represents a API category and each column represents a Context Category, and the value represents feature importance.
The feature importance represents the predictive power a feature has in a learning problem (higher scores are better).

and in many cases represent minor implementation details or generic
program functionality.

These non-essential dependencies have significant security con-
sequences when they are used in the feature space. For example,
to work around graph-based classification, the malware developer
could insert benign routines into their malware to intentionally con-
fuse the classifier. This is effective because the resulting malware
would contain more benign behavior than suspicious behavior, by-
passing detection. In practice, like normal applications, malware
developers also rely heavily on code reuses [10], which causes a
classifier’s training dataset to contain many samples belonging to
the same family. Naturally, this will make the non-informative fea-
tures reoccur, misleading the classifier into making security-centric
decisions based on residual features that aren’t necessarily related
to the behaviors that the classifier intends to vet. Prior work has
shown that the natural redundancy that occurs in malware training
sets combined with introducing non-informative features into the
feature space leads to downstream classifiers being susceptible to
making discriminative decisions based on non-essential features [41].
Instead of including all the dependencies involved in the API in-
vocation, we argue to focus on the lightweight “backbone” of the
behavior. Through extensive evaluation, we show this lightweight
model achieves better accuracy and is more resilient to the context
confusion issue.

2.1.2 Family-Specific Signatures. Prior context-based sys-
tems add a large amount of context related to the specific app which
results in a fine-grain representation of the app’s behavior. However,
this graph essentially becomes a signature for that particular malware
family instead of a more general behavioral profile. Models catego-
rized by family-specific signatures in fact weaken the main goal of
these systems which is to rely on generic features to detect unknown
variants or zero-day attacks. AppContext [52] is a state-of-the-art
Android malware detection system that distinguishes illegitimate
and legitimate uses of sensitive behavior by tying context-factors,
such as activation events, and behavior information, to security-
sensitive behaviors. AppContext attaches these contextual factors
to a security-centric event to identify the intent behind the behavior.

This approach allows AppContext to provide a fine-grained view of
the combination of contextual factors that influenced the execution
of a security-sensitive behavior. Unfortunately, since so many pos-
sible combinations of contextual factors are possible, AppContext
requires intensive, manual labeling of sensitive behaviors before it
can be trained. Additionally, even though the authors are domain
experts, in several cases sensitive behaviors were mislabeled.

One prior approach which has been used to avoid the inten-
sive labeling process is frequency analysis [2, 53]. For example,
DroidAPIMiner [2] leverages frequency analysis to determine which
sensitive APIs are more common in malicious applications. However,
in order for frequency analysis to be effective, the features needs to
be generalizable. This is required because the discriminating factor
of frequency analysis depends on features frequently reoccurring
in the same class. Unfortunately, since AppContext uses so many
contextual factors in its decision making process, applying frequency
analysis in an straight-forward manner would be difficult. This is
because as the set of contextual dependencies grows larger, the
likelihood of it being unique increases. So, although we agree that
context is necessary to make informative decisions about an appli-
cation’s intent, it is also necessary to distinguish better information
from non-informative factors. This approach allows context-based
systems to identify the key contextual factors that make up the back-
bone of the malware’s behavior while also avoiding non-informative
dependencies in order to maintain the generality of the feature space.

2.2 Case Study: Identifying Informative Context
Factors

In this case study, we collect 54,969 labeled sensitive behaviors to
study the dependency relationships between Android sensitive APIs
and the corresponding contextual factors. We extract the contextual
factors for each behavior with a state-of-the-art, context-based sys-
tem, AppContext [52]. AppContext uses static program analysis to
capture the events and conditions that each security-centric API is
dependent on. By extracting this context, AppContext determines
under what events and conditions this security-sensitive event oc-
curred. Next, AppContext uses these contextual factors as features
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Figure 1: Visualization of the four stages of analysis of PIKADROID. To
classifying a unknown app. (a) PIKADROID each app first goes through
the reachability module, which identitfies the sensitive APIs invokable
from each entry point. (b) Next, the reachability results are passed into
the resolution module, where Class Hierarchy Analysis (CHA) is ap-
plied to identify what classes were extended. (c) Feature Construction
(d) PIKADROID determines if the application is malicious or benign.

to classify whether the sensitive API is used inappropriately or not.
The intuition here is that the events and conditions under which a
security-sensitive method is invoked differ in benign and malicious
applications.

In this study, we address the question: what are the informa-
tive, contextual factors that highly distinguish between legitimate
and illegitimate uses of sensitive behavior? To answer this ques-
tion, first sensitive behaviors are categorized into several sets. We
leverage the Android permission model to do the categorization.
For example, HttpClient.execute belongs to the INTERNET cate-
gory. Unguarded APIs, such as ClassLoader.loadClass, are then
placed in categories based on their functionality. For example, the
CLASS_LOADER category contains methods related to dynamic code
loading. AppContext also creates contextual categories such as lo-
cation, system, and network. Contextual categories for entrypoints
were created by grouping similar entrypoints into four categories
Activity, Service, Broadcast Receivers, UI.

After completing the categorization process, we rank each contex-
tual category based on how influential they are on determining if the
behavior is benign or malicious using Ridge Regression [23]. The
results are shown in Table 1 (the higher the percent, the more impor-
tant the feature). The remaining categories are discussed in §6.2.4.
The rank and importance of each context category implies which
contextual factors provide informative contextual information and
what factors are potentially non-informative. In almost all cases,
the ENTRYPOINT categories were ranked the highest. Following the
entrypoint category is the NETWORK category. Therefore we conclude
that the entrypoint is the strongest factor, which indicates its po-
tential in being the most discriminative and generalizable power in
classification. This finding motivates us to use it in our proposed
lightweight contextual model.

2.3 Calling for Lightweight Context Dependencies
Identifying under what circumstances a behavior occurred helps dif-
ferentiate malicious and benign applications because the additional
context helps distinguish between malicious and benign uses of sen-
sitive behavior. We develop lightweight, circumstance awareness
by identifying what entrypoint was used to execute a sensitive API.
The choice to use the entrypoint is based on the stark differences we

Entrypoint Risk Score

Unconditioned on entrypoint (API only) 0.90
Activity.onDestroy 15.15
Activity.onRestart 14.46
DialogInterface.onClick 3.39
Preference.onPreferenceChange 1.77
Service.onCreate 6.89
Service.onStart 6.20
webkit.onDownloadStart 1.03

Table 2: The ratio of of how frequently malicious applications executed
a HTTP Client from different entrypoints in malicious versus benign
apps as well as not conditioned on any entrypoint

find in what entrypoints malicious and benign applications use to
invoke sensitive behavior. For example, in Table 2 we provide the
likelihood of a malicious application executing a HTTP client from
different entrypoints. Despite this API being used by more benign
apps, malicious applications are 6.89 times more likely to invoke it
from the Service.onCreate entrypoint. Based on this observation,
we build a model that includes the entrypoints of the sensitive API
invocation, improving the accuracy of malware detection.

3 PIKADROID
3.1 Overview
We propose a system that uses lightweight, circumstantial aware-
ness for Android malware detection. We depict the architecture of
PIKADROID in Figure 1. First, the static module extracts sensitive
behaviors and the lightweight context in which they occur. The
output of this step is the set of all (entrypoint, target API) pairs
extracted for each app in a training set. After the static analysis is
complete, PIKADROID uses the extracted pairs to learn under what
circumstances the invocation of a sensitive API should be consid-
ered malicious. Similar to prior approaches [2], we assume pairs
that are found more in malicious applications are naturally more
malicious. This allows PIKADROID to identify when behaviors that
are commonly used by both benign and malicious applications are
being used inappropriately. After the frequency analysis is com-
pleted, a risk score, re,t , is assigned to each pair (entrypoint,target
API). The risk scores are then used to create a feature vector for
each app. Finally, PIKADROID uses the apps in the training set to
train PIKADROID’s classifier. We test several machine learning clas-
sifiers for comparison, and find that a RandomForest Classifier [29]
performs the best (refer to §6.5 for detailed performance evaluation).
After completion of the training phase, PIKADROID’s model can be
used to accurately classify benign and malicious apps.

3.2 Static Analysis Module
PIKADROID’s static module applies reachability analysis starting
from each entrypoint used by an app to a set of configurable, tar-
geted, sensitive APIs methods. The goal of the static analysis module
is to identify what sensitive behaviors are used by an application,
and under what lightweight context this behavior is invoked. To
identify what set of behaviors in the Android framework should be
considered sensitive, we leverage SUSI [39] to identify a compre-
hensive lists of sensitive source and sinks and Pscout [6] to identify
permission-guarded APIs. Additionally, the Android framework
leverages over 20,000 different callbacks that could potentially be
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Figure 2: Detailed illustration of PIKADROID’s static-analysis module.
The static analysis phase applies (a) reachability analysis from each en-
trypoint in the application to identify what sensitive APIs are invokable
from each entrypoint. Next, the (b) class hierarchy is used by the (c)
subclass resolver to generalize the feature space and remove applica-
tion syntax.

used as entrypoints [9]. PIKADROID refines this list into a set of
sensitive entrypoints including component lifecycle methods, system
level callbacks, UI callbacks, and security-sensitive callbacks. Our
static analysis module uses these entrypoint and API lists to produce
a set of all pairs (entrypoint, targetMethod) found in the applica-
tion, which will be passed to the learning module. The following
sections detail each step in the static analysis pipeline.
Preprocessing. PIKADROID first pre-processes the apps for the
static analysis. App’s apk files are disassembled and unpackaged
using apktool [47]. The dalvik classes are retargeted to Java byte-
code using Dare [35], and the bytecode is transformed into Wala’s
internal Intermediate Representation [19] for further analysis.

Next, PIKADROID builds a callgraph for each app being ana-
lyzed. In order to generate a precise callgraph, a starting point for
the application must be defined. Android apps are event driven and
therefore do not have a generic main() method which is present in
standard Java programs. Instead, apps have components which begin
executing in response to events from the device and the user. These
components are implemented by extending a pre-defined component
class provided by the Android framework. Each component is then
statically registered in AndroidManifest.xml so the device knows
what component lifecycle method to call in response to certain events
(PIKADROID identifies dynamically-registered broadcast receivers).
To ensure that the callgraph generation algorithm finds all possible
paths through the app, we create a dummy main method which con-
tains all possible lifecycle transitions for each component registered
in the app’s manifest. This dummy method creation follows an ap-
proach similar to FlowDroid [20]. Next, to model inter-component
communication (ICC), we leverage an approach similar to Epicc [36]
to append ICC edges onto the callgraph.
Entrypoint Discovery. On top of the callgraph, we use an entry-
point discovery method similar to prior work [20, 48, 53] to discover
all the entrypoints in the callgraph which will be used in defining
lightweight context. After the entrypoints have been identified, the

1 public class MsgService extends IntentService {
2
3 /* The entrypoint invoked when an intent is received. */
4 protected void onHandleIntent(Intent intent) {
5 ...
6 if (!checkID(getApplicationContext()) {
7 collectPayment();
8 }
9 ...

10 }
11
12 /* Sends premium text message. */
13 public void collectPayment() {
14 ...
15 SmsManager.getDefault().sendTextMessage(...);
16 }
17
18 /* Check if this is a real device. */
19 public static boolean checkID(Context context) {
20 ...
21 deviceId = telephonyManager.getDeviceId();
22 return deviceId.equals("000000000000000");
23 }
24 }

Listing 1: A sms trojan checking the device ID and only sending a pre-
mium text message if it is a real device.

next step is to use reachability analysis from each entrypoint to
identify what sensitive behavior can be invoked. For each entrypoint,
PIKADROID does reachability analysis to identify any callsite of
targetable methods. If a callsite is reachable from a particular entry-
point, a pair, (entrypoint, targetMethod), is generated for later anal-
ysis. At this stage, the entrypoint signatures are defined in application
specific classes which extend the base component classes in the An-
droid SDK. For example, in Listing 1, the MsgService class has
extended the IntentService class and defined the onHandleIntent
callback. The entrypoint MsgService.onHandleIntent belongs to a
subclass that has extended a class in the Android framework, Addi-
tionally, there could be multiple levels of inheritance, as is the case
for MsgButton, whose parent class is AppButton. If a application-
specific entrypoint signature (MsgService) was used to create fea-
tures for each app, the resulting feature space would consist of
sparse feature vectors that included application syntax. Including
application syntax into the feature space makes the model more
susceptible to overfitting and evasion. Overfitting occurs because the
entrypoint signature most likely only belongs to a specific malware
family. Additionally, the model becomes more susceptible to evasion
because entrypoint signatures are developer defined, and the signa-
ture name could be obfuscated and randomized using tools such as
ProGuard [28] resulting in features unique to a single app.
Subclass Resolver. To remove application syntax, we develop a
subclass resolver module that identifies the signature of the base
class in the Android framework which the application specific class
was inherited from. Figure 2(c) shows PIKADROID’s subclass re-
solver, which takes in a reference to the overridden or implemented
entrypoint signature and identifies the signature of the original base
class in the Android framework that was overridden. The resolution
procedure is based on the namespaces provided by Java’s class-
loaders. Specifically, PIKADROID utilizes three classloaders: 1) the
application classloader that loads the app’s code 2) the primor-
dial classloader, which is responsible for loading the Java library
code (java.*), and 3) the extension classloader, which is respon-
sible for loading system-wide, platform-specific extension classes
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(Android.*.) The classloaders form a class hierarchy tree whose
leaves correspond to app specific classes and whose nodes towards
the root are from the Android library. For example, Figure 2(b),
shows a snippet of the class hierarchy tree for MsgButton. When
the subclass resolver needs to identify which base class is overrid-
den, it performs a backwards traversal of the class hierarchy, from
the node belonging to the method signature in the app. The traver-
sal stops when it reaches a class that is provided by the extension
classloader. For example, if the input into the subclass resolver
was the signature, MsgService.onHandleIntent the output would be
IntentService.onHandleIntent. The final output of PIKADROID’s
static analysis module is the set of resolved pairs of (entrypoint,
targetMethod) pairs where the entrypoint’s class belongs to the
Android framework These generalized features are then passed to
PIKADROID’s learning module.

3.3 Learning Module
The intuition behind our features is shown in the following simple
example. In our dataset, benign and malicious applications used
the sensitive method HttpClient.execute at similar rates. However,
in Table 2, we provide the likelihood of a malicious application
invoking the method from different entrypoints. Despite this method
being used with similar frequency by both benign and malicious
applications, malicious applications were 6.89 times more likely to
invoke it from the Service.onStart entrypoint and 15.15 times more
likely to invoke it from Activity.onRestart compared to benign
applications. We use this intuition to inform our feature extraction
method.

To learn the different lightweight contexts associated with each
entrypoint, PIKADROID uses a training set of apps, T . For each
app a ∈ T , PIKADROID first performs static analysis to extract the
set of (entrypoint, targetMethod) tuples as detailed in the prior
subsection. Then, the system partitions T into two sets, M and B,
where M ⊂ T is the set of malicious applications and B ⊂ T is the set
of benign applications. Next, we assign a risk score, re,s , to each pair
that captures the relative maliciousness of the API, s being invoked
from e. The risk score is calculated as the ratio of how often the pair
(e, s ) was found in malicious apps to benign apps. Equation 1 shows
the equation PIKADROID uses to calculate this risk value for each
pair, (e, s ).

re,s =
|{a |a ∈ B ∧ (e, s ) ∈ a}| × |M |

|{a |a ∈ M ∧ (e, s ) ∈ a}| × |B |
(1)

The final phase of PIKADROID’s analysis is feature construction
and model training and testing. The feature vector for each a ∈ T is
va = ⟨re,s : (e, s ) ∈ a⟩, the union of risk values for each (e, s ) ∈ a.
The ground truths are also created in this step and are equal to
0 ∀ a ∈ B and 1 ∀ a ∈ M . The results of these tests are presented and
discussed §6.4

4 IMPLEMENTATION
We implemented a prototype of our system, PIKADROID. The static
module was implemented in 8 thousand lines of Java code, based on
IBM’s WALA Static Analysis Libraries [19]. We leveraged WALA to
generate the callgraph, reachability analysis, and entrypoint analysis.
The learning module was implemented using 3 thousand lines of

Dataset Time Period Malicious Benign Grayware Total

2010-2012 2010 - 2012 3,970 3,788 1,524 9,282
2013-2015 2013 - 2015 2,158 3,596 1,325 7,079
2016-2018 2016 - 2018 2,270 5,000 — 7,270

Total 2010 - 2018 8,398 12,384 2,849 23,631

Table 3: Summary of the datasets used for evaluations.

Python code, and was based on Scikit-learn [38], a machine-learning
Python library.

5 DATASET
The dataset used to extensively evaluate PIKADROID contained
malicious apps crawled from over 16 official and third-party Android
app marketplaces collected using Androzoo [4]. We crawled the
benign apps from Google Play. The dataset contained over 23,631
applications overall, Our final dataset includes 8398 malicious apps,
12384 benign apps, and 2849 grayware apps. Additionally, this
dataset spanned a time-period of eight years. Using such a wide
range of diverse sources is necessary to conduct a robust evaluation
due to the app sampling problem in Android [32]. Next, we leveraged
Virus Total [45] for label verification and to identify grayware. To
be able to assess how well PIKADROID handles concept drift [25],
we manually partitioned the dataset into three different time periods,
2010-2012, 2013-2015, 2016-2018. We used the date when the app
was signed to assign an app to each set. A detailed description of
each partition is shown in Table 3.

6 EVALUATION
Our evaluation addresses the following research questions:
• How effective is PIKADROID in improving the accuracy of

Android malware detection?
• How does the lightweight circumstantial awareness model

perform compared with existing state-of-the-art systems? Par-
ticularly, how does PIKADROID handle “concept drift”, a key
challenge in Android malware detection?
• How robust is PIKADROID against obfuscation?
• What is the runtime performance of PIKADROID?

We perform a comprehensive evaluation covering a variety of
cases in verifying the classification of Android malware [25, 26].
First, we focus on the effectiveness of PIKADROID in terms of ac-
curacy, precision, recall, f1-score, and false-positive rating. Second,
we perform side-by-side comparisons in terms of detection accuracy
between PIKADROID and three prior state-of-the-art detection sys-
tems: AppContext [52], MaMaDroid [31] and DroidAPIMiner [2].
In particular, we compare how these systems handle “concept drift”,
a key challenge that can significantly affect detection effectiveness.
Third, to test the counter-obfuscation ability of PIKADROID, we
use a state-of-the-art obfuscation tool, AVPass [27] to generate ob-
fuscated variants of the malicious samples and test PIKADROID’s
accuracy when classifying these apps. Fourth, we measure the perfor-
mance with different datasets spanning multiple years. To evaluate
PIKADROID, we use the datasets discussed in §5 and 10-fold cross
validation for all tests.
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Dataset Accuracy (%) Precision (%) F1 Score (%) Recall (%) FP Rating

Samples Time Period Pika MaMa Pika MaMa Pika MaMa Pika MaMa Pika MaMa

Malware vs. Benign

2010-12 97.61 94.66 98.29 97.13 97.65 94.64 97.02 92.28 1.76 2.87
2013-15 98.43 97.55 99.24 97.55 97.89 96.70 96.57 95.87 0.44 1.45
2016-18 97.56 96.53 96.90 97.08 96.07 94.27 95.24 91.61 1.38 1.25
2010-18 98.00 95.67 98.52 95.81 97.41 94.58 96.33 93.38 0.96 2.77

Grayware vs. Benign
2010-12 98.15 95.68 97.98 97.85 96.74 92.02 95.53 86.84 0.79 0.77
2013-15 96.91 92.63 97.80 91.09 94.04 85.45 90.57 80.47 0.75 2.90
2010-15 96.83 93.22 96.92 94.86 94.15 86.78 91.54 79.97 1.12 1.67

(Mal-&Grayware) vs. Benign
2010-12 96.99 97.55 97.87 97.55 97.44 96.70 97.03 95.87 3.06 1.45
2013-15 96.54 93.57 97.59 94.60 96.44 93.39 95.32 92.21 2.28 5.10
2010-18 97.79 92.63 98.27 93.90 97.47 92.12 96.70 90.40 1.34 5.33

Table 4: Comparison of PIKADROID and MaMaDroid [31] in accuracy, f-score, precision, recall, and false positive rating when being used at the same
time period. The training and testing data are from the same time periods. The cases where PIKADROID outperforms MaMaDroid are in bold.

6.1 Effectiveness
Our first goal is to evaluate how well PIKADROID can correctly
classify malware during the time periods when it was most preva-
lent. Our evaluation includes four datasets. Three datasets contain
benign and malware samples from the same time-periods: 2010-
2012, 2013-2015, 2016-2018. The first three datasets verify that
lightweight circumstantial awareness can accurately distinguish be-
tween samples that were popular in relatively the same time periods.
The final dataset, 2010-2018, contains malware that spans over eight
years. This dataset is used to verify that PIKADROID is capable of
learning a diverse set of malware samples. This is necessary because
the Android OS is heavily fragmented [46], and malware developers
may still use old malware samples to attack outdated devices.

The accuracy, precision, f-score, recall, and false positive rating
for each experiment are summarized in Table 4. We see that for each
dataset, PIKADROID is able to maintain a low false positive rate of
under 1.76% for all cases. For malware in the 2013-2015 dataset,
PIKADROID is able to maintain a false-positive rate of 0.44%. Main-
taining a low false positive rate (FPR) is very important for Android
malware detection systems because high FPRs result in more benign
samples being misclassified as malware samples. For each misclassi-
fied benign sample, a intensive manual process is required to verify
the legitimacy of the app. We see that PIKADROID is able to detect
97.02% of the samples in the 2010-2012 dataset. We also evaluated
PIKADROID on the larger dataset which contained samples from all
three time periods. We found that PIKADROID was able to detect
malware with an accuracy of 98.00% when trained with malicious
samples from different time periods.

6.2 Comparison with Prior Work
6.2.1 With AppContext. For modeling, AppContext [52] cre-

ates a contextual model of an app based on a variety of factors:
environmental-, activation-, and constraint-dependencies. We use
Ridge Regression [23] to rank the contextual factors by importance.
Performance wise, we find that the use of multiple types of contex-
tual information as AppContext does brings two challenges. First, the
capturing of these contextual behaviors is unlikely to scale to a real-
world environment. For example, we originally intended to classify
all 23,631 applications in our dataset using AppContext. However, it
imposes a size cap of 5 MB on the analyzed applications, with larger
apps requiring significant manual efforts to extract the contextual fea-
tures. In addition, we find that in many cases the analysis takes over

4 hours and consumes over 256 GB of physical memory. In compari-
son, PIKADROID’s static analysis is lightweight, and on average it
finishes the analysis in one minute per app (refer to §6.5 for detailed
performance evaluation). Unfortunately the lack of scalability related
to AppContext’s method prevented a side-by-side comparison. To
provide a comparison of PIKADROID and AppContext an extension
of the case study in §2.2 is provided. In the case-study provided in
§2.2, the entrypoints, activity, broadcastReceiver, service, and
UI, were among the highest ranked categories. The second highest
ranked category is behaviors related to NETWORK dependencies. We
summarize the comparison results in Table 1. Therefore, based on
this comparison, the model of PIKADROID using entrypoints pro-
vides a lightweight and scalable approach to malware detection by
avoiding non-informative contextual factors, which limits AppCon-
text’s scalability.

6.2.2 With MaMaDroid. Another current, state-of-the-art An-
droid Malware detection system is MamaDroid [31]. This system fo-
cuses on abstracting sequences of method and API calls found in an
app to build a Markov chain model which represents the probabilities
of transitioning between method/API calls. In an effort to minimize
features unique to a malware family or single app, MamaDroid ab-
stracts each method/APIs signature to its containing package name
and creates the transition model from the resulting set. For example,
android.view.KeyEventwould become android.view. This abstrac-
tion process is used to be resilient to the frequent changes in the
Android Platform and to prevent feature explosion. For comparison,
we use the open-sourced part of MaMaDroid [1] for its abstraction
and modeling, then implemented the classification portion, which is
not provided in its source code using a RandomForest Classifier [29],
as described in the original paper. We evaluate both systems on each
of our partitioned datasets as well as the combined dataset covering
eight years. A detailed comparison of PIKADROID and MaMaDroid
in terms of accuracy, precision, f-score, recall, and false positive
rating is given in Table 4. When comparing the results of the clas-
sification of malware and benign samples in the same time-period,
we verify that both PIKADROID and MaMaDroid are effective at
detecting Android malware. Overall, PIKADROID outperforms Ma-
MaDroid in every experiment in terms of f-scores. Even though, Ma-
MaDroid maintained lower false positive rate in 3/10 experiments,
PIKADROID maintained a slightly better detection rate in these tests.
These tests show that context-based, Android malware detection
systems can achieve the same high performance as abstraction-based
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Dataset FP Ratio FN Ratio

2010-2012 1.45x 1.38x
2013-2015 3.02x 1.24x
2016-2018 2.035x 1.02x
2010-2018 2.36x 1.29x

Table 5: The ratio of false positive and false-negatives of APIMiner
to PIKADROID. Column one shows the ratio of false-positives of
APIMiner to PIKADROID. Column two shows the ratio of false-
negatives of APIMiner to PIKADROID.

methods, and in some cases achieve higher detection rates while
still maintaining low false positive rates. We believe this shows that
both abstraction-based and lightweight circumstantial awareness ap-
proaches for malware detection can accurately detect malware when
the testing and training data are from the same time periods.

The starkest difference in these comparison tests is the classifica-
tion of grayware. Grayware creates new challenges for classification
because its behavior blurs the line between what is malicious and
what is benign. For the 2010-2015 dataset, PIKADROID detects
91.54% of grayware, but MaMaDroid only detects 79.97% of the
samples. We find that the discrepancy is due to MaMaDroid abstract-
ing method signatures to package names. This difference comes from
grayware’s reliance on inappropriate UI-driven event-handlers to
trigger advertising displays. For example, grayware samples would
register android.view.KeyEvent callbacks that display ads and ac-
cess sensitive device information. Since MaMaDroid relies on only
using the package name (android.view) instead of the full API
signature, it loses the necessary context, since it cannot see what
callback is used.

6.2.3 With DroidAPIMiner. To evaluate how meaningful the
contextual information obtained from conditioning the target API
call on its corresponding entrypoint is for malware detection, we
compare PIKADROID to prior works by implementing a frequency-
based approach like DroidAPIMiner [2], which we call APIMiner
for the remainder of the paper. Unlike PIKADROID, these systems do
not take into consideration the circumstances in which the sensitive
API are invoked. To evaluate how much improvement is obtained
from using our contextual awareness, we evaluated APIMiner on
each dataset discussed in §5. We provide a detailed report of the false
positive ratio and false negative ratio of APIMiner to PIKADROID

in Table 5. We see that by not leveraging the entrypoint, it can lead
to 3.02x times more false-positives.

In Table 5, we show the reduction of false-positives and false-
negatives PIKADROID receives when using the pairs of (entrypoint,
targetMethod) compared to using only the sensitive APIs alone.
For the 2010-2018 time period, PIKADROID reduces the false posi-
tives by 2.36x and the false negatives by 1.29x. This suggests that
PIKADROID’s lightweight circumstance-aware approach leads to a
significant reduction in false positives and false negatives.

6.2.4 Reducing False-positives. We provide an additional
case study that shows how lightweight circumstantial awareness al-
lows PIKADROID to detect behaviors that have malicious intent
that is undetectable when the APIs are considered alone. When
PIKADROID is configured to only use sensitive APIs, the malicious

Entrypoint (E) Targeted API (T) Risk Score (E,T) Risk Score (T)

Service.onStart FileWriter.write 3.06 1.20

Service.onStart
DataOutputStream.
writeBytes 18.71 0.256

BroadcastReceiver.
onReceive Cursor.getString 2.59 1.46

Service.onCreate
TelephonyManager.
getDeviceID 11.05 0.401

Table 6: Comparison of risk scores using (entrypoint, targetMethod), or
(E,T) of PIKADROID and target-API-based system APIMiner for the
sample “e2caa60b08ea474f0812fabac0985a19”, which belongs to the
DroidKungfu [54] malware family. By having an outstanding risk score
using (E,T), PIKADROID detects this sample while APIMiner does not.

Time Period Obfuscations TPR%

2010-2012

string encryption, package obfuscation,
class obfuscation, identifier mangling,
resource injection, permission injection,
bytecode transformations, method obfuscation

92.5 %

Table 7: The obfuscations applied to bypass PIKADROID using AV-
Pass [27]. The first column represents the time period when the mali-
cious apps are found; the second column lists the obfuscations, and the
third column provides the True Positive Rating (TPR%).

sample with the md5sum “e2caa60b08ea474f0812fabac0985a19”,
from the DroidKungfu [54] malware family is not detected as mal-
ware. In Table 6, we show a subset of (entrypoint, targetMethod)
pairs that are present in this sample. The column Risk Score (T)
shows the risk-score of the sensitive targeted API, T , when the
targeted API is considered without being conditioned on the en-
trypoint. The risk score is a comparison of the number of benign
samples that use this particular API versus the number of malicious
samples which use this targeted API. For example, the sensitive
API DataOutputStream.writeBytes had a risk-score of 0.256. This
means it was only found in 0.256 of the malicious apps. Prior ap-
proaches like DroidAPIMiner would find this behavior uncommon
in malicious apps, and the sensitive API would be considered noise
and be filtered from the feature space [2]. Unfortunately, this ap-
proach leads to significant context loss which decreases detection
accuracy.

PIKADROID leverages lightweight circumstantial awareness to
create a risk score based on the sensitive API and a lightweight
representation of the contextual factors involved in the invocation
of this security sensitive method. The column Risk Score (E, T)
shows the risk-score of the sensitive, targeted API, T , when it was
invoked using the entrypoint E. For example, when the targeted
API DataOutputStream.writeBytes is invoked from the entrypoint
Service.onStart, it is 18.71x more likely to be from a malicious
app.

6.2.5 Drifting Scenarios. To test how resilient PIKADROID is
to concept drift [25], we created two drifting scenarios and compared
the results of PIKADROID, MaMaDroid [31], and APIMiner [2] in
each. In the first drifting scenario, each system was trained using
the 2013-2015 dataset, and then classified the samples from the
2016-2018 time period. Figure 3(a) shows the results in terms of
f-score for PIKADROID, MaMaDroid, and APIMiner. PIKADROID
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Figure 3: The results of both drifting scenarios is provided in terms of f
score. PIKADROID (blue), MaMaDroid (purple), and APIMiner (green).
The left (a) shows scenario 1, which used the 2013-2015 samples as for
training PIKADROID. The right (b) shows scenario 2, which used the
2010-2012 samples for training.

was able to maintain an f-score of 94.3%. In contrast, MaMaDroid
and APIMiner had a f-score 89.89% and 65.92% respectively. We
believe this scenario shows that lightweight contextual systems, like
PIKADROID, can be extremely effective at generalizing the feature
space. This is because PIKADROID aims to learn only the most infor-
mative behaviors that form the core of the malware. In scenario two,
each system was trained using the 2010-2012 datasets, and then clas-
sified samples from 2013-2018. The results are shown in Figure 3(b).
Similar to scenario one, PIKADROID and MaMaDroid were able
to accurately detect samples 1-5 years older than the training set.
However, all three systems performed poorly at detecting apps 6-
8 year older. Unlike scenario 1, APIMiner performed suprisingly
well, and actually marginally performed better than PIKADROID

and MaMaDroid. This leads us to believe that properly evaluating
concept-drift is extremely difficult because the evaluation is ex-
tremely susceptible to undersampling. This is because evaluating
concept-drift requires a diverse dataset over a large time period.
Therefore, we believe this evaluation technique may not be the most
effective approach at measuring concept drift. However, since it
is similar to prior approaches [31], we believe the results contains
useful information. However, we believe, a more formal approach,
such as Transcend [25] is necessary. Finally, we also believe these
two scenarios show that both abstraction-based and contextual-based
systems can improve a model’s lifetime by creating more general-
izable feature spaces. Both MaMaDroid and PIKADROID perform
well in both scenarios when the testing samples are 1-5 years older
than the training samples.

6.3 Robustness
In this section, we discuss experiments used to extensively eval-
uate PIKADROID’s features against state-of-the-art obfuscations
tools. We also discuss obfuscations that could potentially hinder
PIKADROID’s feature set.
Obfuscated Malware. In order to evade anti-virus scanners and
learning-based systems, malware authors leverage obfuscation tech-
niques to make analysis and reverse engineering more difficult [27,
28, 40, 43]. To identify how robust PIKADROID is to obfuscation,

Figure 4: The f-scores of K-Nearest Neighbor (KNN) (k = 3, 5), Ran-
dom Forest (200 estimators), and a Multi Layer Perceptron with one
hidden layer of size 100.

we leverage AVPass [27], an open-source obfuscation platform that
is capable of rule and feature inference. This allows malicious devel-
opers to tailor combinations of obfuscations techniques to bypass
learning-based malware detection systems including PIKADROID.
We first train PIKADROID on Android applications in the 2010-2012
dataset. Next, we use AVPass to create unknown obfuscated variants
of samples found in the same time period. After the obfuscation pro-
cess is completed for all apps, we use PIKADROID’s trained model
to classify them as benign or malicious. We find that PIKADROID

accurately detects malicious applications, even when deep-semantic
obfuscated apps are used for testing. The results of our experiments
are given in Table 7. Eight obfuscations are applied by AVPass,
including bytecode transformation, identifier mangling, and class
obfuscation. However, despite these obfuscations PIKADROID is
able to still detect the unknown variants with a true positive rating
92.5%. We attribute PIKADROID’s ability to be robust to its reliance
on semantic-based features instead of application syntax like prior
approaches [15, 16]
Limitations. We see two possible limitations related to the feature
space used by PIKADROID. The first limitation is entrypoint obfusca-
tion. Yang et. al. showed possible attacks against context-based sys-
tems using phylogenetic analysis [8]. This attack launches an inter-
component transplantation attack [50], which transplants the mali-
cious behavior into a different application component. Unfortunately,
this attack requires an isolated component (broadcastReceiver),
which could be easily detected because malicious applications of-
ten invoke sensitive APIs from broadcast receivers. PIKADROID is
subject to a second limitation such that its contextual factors may be
more susceptible to Java reflection and dynamic code loading com-
pared to prior context-based systems [52, 53]. This is because these
systems tailor the contextual factors to specific malware families,
which allows them to identify inappropriate uses of Java reflection
and dynamic code loading. For example, AppContext [52] accurately
detects the misuse of Java Reflection and Dynamic Code loading by
attaching activation-, control-, and system- dependencies to the invo-
cation of a security sensitive method. Unfortunately, AppContext is
only usable on apps that are smaller than 5 MB.
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Dataset Runtime (s) Callgraph Nodes Callgraph Edges

2010-2012 34.4 4,728 14,627
2013-2015 46.3 5,621 17,042
2016-2018 55.8 5,921 18,095
2010-2018 49.4 5,584 16,989

Table 8: The performance metrics of PIKADROID’s static analysis in
terms of average runtime, callgraph nodes, and callgraph edges for the
2010-2012, 2013-2015, 2016-2018, and 2010-2018 datasets.

6.4 Classification Models
In order to verify the effectiveness of PIKADROID’s lightweight
contextual approach independent of the effect from the classification,
we conduct a set of experiments using different machine learning
classifiers to determine whether the high performance seen in the
previous evaluations is a result of a particular type of model or the
features themselves. Specifically, we run PIKADROID using K Near-
est Neighbors (KNN) with 3 and 5 neighbors as well as a Random
Forest (RF) [29] and a Multi-Layered Perceptron (MLP) [42]. For
the RF, we have 200 estimator trees and for the MLP we have a
tanh activation with adam solver and one hidden layer with 100
neurons. Our results, in terms of f-score, are shown in Figure 4. All
of the models we test achieve a f-score of 93% or higher on all of the
datasets. From these results, we conclude that the high performance
of PIKADROID is not simply a result of using a particular classifier,
but instead from the lightweight, contextual features extracted from
each application.

6.5 Performance
We perform the evaluation experiments for PIKADROID on a server
with 64 Intel Xeon E7-4820 CPUs running at 2.00GHz and 128 GB
of physical memory. For the static analysis module, we configure
PIKADROID to build at most 10 callgraphs in parallel. In Table 8, we
show the average runtime for PIKADROID’s static analysis module.
On average, PIKADROID requires less than one minute to analyze
each application and 91% of the time analyzing each application is
spent on the callgraph building phase. The reachability analysis takes
the remaining 9% of the time. We observed that applications from the
2016-2018 time period takes 25% more time to analyze compared
to apps from the 2010-2012 period. However, since the runtime
is still under one minute, we believe PIKADROID is scalable to
analyze large-scale markets. The training of PIKADROID’s learning
module takes less than ten hours. The majority of the performance
is related to parsing the output of the static analysis and can be
significantly optimized. Finally, the classification phase is dependent
on the model, but we found that all models finished in under 3 hours
on our entire, eight-year dataset.

7 RELATED WORK
Android Malware Detection. There has been many proposed solu-
tions to Android malware analysis that rely on static [2, 3, 5, 7, 10,
15, 16, 21, 22, 31, 52, 52, 53, 55] or dynamic [11, 12, 30] analysis.
Drebin [5] uses lightweight static analysis to provide a on-device
approach to malware detection. DroidAPIMiner [2] uses frequency
analysis to identify critical sensitive APIs that are commonly used
by malicious apps. Unfortunately, [2] suffers from feature explosion
because it cannot generalize its feature space and achieve its goal of

being an on-device detection system. DroidAPIMiner uses frequency
analysis to identify critical sensitive behaviors, then uses the set of
critical APIs for classification. However, frequency based systems
that do not leverage context incur higher false-positive and lower
detection rates than PIKADROID. Finally, one promising approach to
Android malware detection is MaMaDroid [31]. MaMaDroid lever-
ages sequences of abstracted method calls to create a probabilistic
representation of program behavior. This approach creates a more
general model that is more robust to unknown variants of malware
and new malware families. One limitation of this approach is that it
can suffer from context loss, due to the natural loss of information
that occurs when abstracting the program semantics into a more
coarse-grained representation.
Context-based Systems. There has been many systems for iden-
tifying contextual dependencies for Android malware using static
analysis [17, 18, 34, 37, 51–53]. AppContext [52] extracts con-
textual factors and activation dependencies to identify malicious
behaviors. DroidSift [53], Apposcopy [17], Astroid [18], and En-
mobile [51] rely on contextual API dependencies to create complex
dependencies that rely on deep-semantics to create robust signatures
for malware. Unfortunately, one limitation of all prior approaches
that PIKADROID does not have is they cannot generalize their feature
space. Otherwise, they would not be able to create the fine-grained
signatures they need in order to achieve their main goal of identify-
ing as many possible unknown variants of known malware. Finally,
Dark Hazard [37] also leverages static analysis to build context lever-
aging constraint-relationships. It uses these relationships to identify
hidden-sensitive operations, which is orthogonal to PIKADROID’s
goals. One limitation of PIKADROID is that it cannot identify heavily
packed code. In order to addresses this, we could leverage dynamic
analysis tools, such as DroidScope [49], DroidUnpack [13], or Cop-
perDroid [44] to dynamically extract contexts. However, we consider
this to be out-of-scope of this work.

8 CONCLUSION
In this work we present an approach to Android malware detec-
tion based on lightweight contextual awareness. We implemented a
lightweight context-based system, PIKADROID, and completed an
extensive evalution, and our evalution shows sizable improvements
of accuracy and scalability over existing approaches.
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