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ABSTRACT

Compromising a website that is routinely visited by employees of
a targeted organization has become a popular technique for nation-
state level adversaries to penetrate an enterprise’s network. This
technique, dubbed a “watering hole” attack, leverages a compro-
mised website to serve as a stepping stone into the true victims’
network. Despite watering hole attacks being one of the main tech-
niques used by attackers to achieve the initial compromise stage
of the cyber kill chain, there has been relatively little research re-
lated to detecting or investigating complex watering hole attacks.
While there is existing work that seeks to detect malicious mod-
ifications made to an otherwise benign website, we argue that
simply detecting that the website is compromised is only the first
stage of the investigation. In this paper, we propose MNEMOSYNE, a
postmortem forensic analysis engine that relies on browser-based
attack provenance to accurately reconstruct, investigate, and as-
sess the ramifications of watering hole attacks. MNEMOSYNE relies
on a lightweight browser-modification-free auditing daemon to
passively collect causality logs related to the browser’s execution.
Next, MNEMOSYNE applies a set of versioning techniques on top of
these causality logs to precisely pinpoint when the website was
compromised and what modifications were made by the adversary.
Following this step, MNEMOSYNE relies on a novel user-level analy-
sis to assess how the malicious modifications affected the targeted
enterprise and seeks to identify exactly which employees fell vic-
tim to the attack. Throughout our extensive evaluation, we found
that MNEMOSYNE’s forensic analysis engine was able to identify the
true victims in all 7 real-world watering hole scenarios, while also
reducing the amount of manual analysis required by the forensic
analyst by 98.17% on average.
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1 INTRODUCTION

Sophisticated, targeted attacks against enterprise networks have
been growing more frequent recently. Such attacks often unfold
through a sequence of steps sometimes referred to as the cyber
kill chain [65]. To deliver the initial attack that compromises the
targeted network, attackers leverage different techniques such as
sending spear phishing emails to gain a foothold on the victim’s
workstation or hoaxing the user to visit a website controlled by the
adversary and completing a drive-by-download attack. These tac-
tics have been well studied and enterprises have deployed effective
blacklist-based firewall rules (e.g., WAF [10] and Email Defender [4])
and set up periodic security training for its employees. Unfortu-
nately, adversaries have evolved their techniques to infiltrate a
targeted enterprise network by compromising whitelisted, third-
party entities with which the enterprise normally communicates.
For instance, compromising a website that is frequently visited by
individuals affiliated with the targeted organization has become
a growing trend to achieve the initial intrusion into a targeted
organization’s network. Such attacks are referred to as “watering
hole” attacks. Recently, watering hole attacks have been employed
in multiple state-level cybercrimes to conduct digital-espionage
in southeast Asia [41], steal proprietary information from large
tech firms such as Google and Apple [16, 53], and leak confidential
financial information in Poland and Mexico [60, 68].

Despite watering hole attacks being a key method for achieving
the initial compromise into an organization, little research has been
conducted to study how to detect, analyze, and investigate these
attacks effectively. However, having the capability of completing a
thorough postmortem analysis is desired by organizations, since
it allows them to understand the attacker’s intentions, prevent
additional damage, and provides a mechanism for building future
defenses. In this paper, we propose MNEMOSYNE, a system that
facilitates comprehensive internal forensic investigation on web-
based watering hole attacks.
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Detecting watering hole attacks and reconstructing their prove-
nance is challenging. First, there has been a significant amount
of work dedicated to attack reconstruction, with most solutions
relying on whole-system provenance tracking and attack recon-
struction [12, 18, 20, 22, 23, 25, 26, 29, 33, 39, 40, 42, 45, 48, 49, 51,
52, 59, 62, 63, 66]. These systems typically collect audit logs that
track the information-flow at the system-level and tend to rely on
low-level semantics (processes, socket 10, and system calls), which
is necessary in order for them to support as many applications
as possible. Unfortunately, existing systems’ reliance on low-level
semantics limit their capability of reconstructing sophisticated wa-
tering hole attacks. This is because capturing information at the
system level is limited in terms of its capability of understand-
ing fine-grained details related to Javascript (JS) execution within
the browser. To overcome this semantic gap, MNEMOSYNE collects
audit logs that capture information in terms of browser-level seman-
tics (e.g. page, script, domain, etc.). While prior browser auditing
systems exist [43, 58, 61], they require extensive modifications to
the browser itself, making deployment in a real-world scenario
difficult. In contrast, MNEMOSYNE relies on a browser-modification-
free, lightweight approach that takes advantage of existing debug-
ging interfaces already provided by off-the-shelf Chromium-based
browsers (e.g., Chrome, Opera, Microsoft Edge, Brave, etc.).

The second challenge in developing a system for investigating
watering hole attacks is that watering hole attacks are highly tar-
geted and during the early stages of a forensic investigation, it is
unclear which visitors are considered the true targets. To address
this challenge, we argue that simply detecting a website is com-
promised is not enough. Instead, for organizations that routinely
visit this compromised website, they need to complete a indepen-
dent and accurate investigation to determine if visiting this site
while it was compromised had any adverse effects on their own
enterprise networks. However, completing this investigation in an
independent manner is not straightforward, since the server-side
logs related to how and when the compromised website was modi-
fied are external and inaccessible to the targeted organization. To
overcome this, MNEMOSYNE relies on a lightweight auditing ap-
proach that passively collects audit logs during a user’s browsing
sessions. Finally, while MNEMOSYNE completes the investigation
in a postmortem fashion, it is still necessary to complete the in-
vestigation in a time-sensitive manner. This is because during the
investigation, the decreased system uptime can easily cost millions
of dollars [1]. Additionally, an efficient investigation that allows the
investigators to quickly identify the scope of the attack can reduce
the overall damage created by the attack. To make the investigation
as efficient as possible, MNEMOSYNE applies a set of differential
analysis techniques on the audit logs collected to quickly identify
which employees at the organization should be considered victims
of the attacks and which employees were unaffected by the attack.

In summary, we make the following main contributions:

e A watering hole attack investigation system. We pro-
pose MNEMOSYNE!, a system that is able to accurately recon-
struct the provenance and impact of sophisticated watering
hole attacks.

IThe source code, datasets, and testbed of MNEMOSYNE will be made available to the
community.

e Browser-modification-free design. MNEMOSYNE does not
require browser code modifications and can therefore be
more easily deployed within users’ browsers for collecting
detailed web audit logs.

o Accurate and efficient analysis. MNEMOSYNE applies a
set of versioning and prioritization methods to efficiently re-
construct and analyse enterprise-level watering hole attacks.
Using seven scenarios based on real-world security incidents
involving watering hole attacks, MNEMOSYNE is able to iden-
tify the individuals who were victims of the attack in all of
these scenarios with efficient runtime.

2 MOTIVATING EXAMPLE & CHALLENGES

In this section, we describe an attack scenario modeled off of a
real-world watering hole campaign that showcases the challenges
that MNEMOSYNE addresses.

2.1 2017 ASEAN Watering Hole Attack

This case study relates to a real-world, politically-motivated cam-
paign that leveraged a watering hole attack to achieve digital surveil-
lance and espionage on employees and high-powered individuals
affiliated with the Association of Southeast Asian Nations (ASEAN),
an organization that helps to foster peace between member coun-
tries. The attack was carried out in 2017 and was recently attributed
to APT32, a nation-state threat actor that is known to carry out
cyberattacks against political enemies of the Vietnamese Govern-
ment [41]. We chose this motivating example because it clearly
demonstrates the challenges a forensic analysis will face during
postmortem analysis of complex watering hole attacks.

The attack was divided into two stages. The first stage performed
reconnaissance by collecting sensitive information related to the
user’s browser and underlying system to accurately identify if
this visitor matched the profile of the targeted victims. After a
visitor’s profile was developed, it was used to identify the targeted
visitors. Finally, the targeted visitors were exploited using social-
engineering that pursued victims to grant the attackers access to
their Gmail accounts via a malicious OAuth App.

2.2 Challenges

Next, we discuss the challenges that a forensic analyst faces when
completing an internal investigation on a sophisticated watering
hole attack and discuss the limitations of existing postmortem
analysis systems. The challenges described in this section are the
challenges faced by the targeted organization, not the organization
hosting the compromised website.

External Point-of-Compromise. During a traditional investi-
gation of a sophisticated attack, the initial point-of-compromise
occurs at an endpoint system in the enterprise’s network. The intru-
sion is usually achieved through spearphishing emails or traditional
exploitation techniques. One advantage this provides is that the
audit logs related to this attack will be accessible to the victim
organization. Unfortunately, this is not the case for watering hole
attacks, since the point-of-compromise is external, beginning at a
third-party website that is unlikely to be affiliated with the true
victim organization. This creates the challenge that the audit logs



related to the compromised website and the attacker’s modifica-
tions to the site are only accessible by the website’s maintainers,
not by the forensic investigator. Due to this limitation, we found
that forensic investigators often have to fallback on internet archive
sites, such as archive.org or passiveTotal [6], to identify how the
compromised domain was modified [11, 28, 35, 36]. However, be-
cause watering hole attacks are highly targeted, the machines used
for snapshotting the web page will not match the intended victim
profile. Finally, since the forensic analyst does not know how the
web server was modified, the analyst will begin the investigation
with minimal information about the initial compromise.

Also, due to the lack of server-side logs, it is challenging to iden-
tify the dwell time, which is the time window in which the attacker
controlled the compromised website. Identifying the window-of-
compromise is necessary to ensure a comprehensive investigation,
since any visit to the compromised website within this time window
may have led to a successful attack. Without a clear window-of-
compromise, the analyst may have to review irrelevant website
traffic logs generated prior to the incident, prolonging the investi-
gation.

Semantic Gap. Another limitation is the semantic gap that ex-
ists when completing a postmortem analysis on web-based attacks
using only system-level logs. Recently, whole-system provenance
auditing has been shown to be effective at investigating sophisti-
cated attacks [20, 29, 30, 42, 48, 49]. These systems typically collect
audit logs that track the information-flow at the system-level and
rely on low-level semantics to causally connect all artifacts and re-
sources involved in the attack. However, using low-level semantics
limits reconstruction of watering hole attacks because the semantic
gap between system-level and browser based semantics prevents
a thorough understanding of JS execution. Prior work that has at-
tempted to address this limitation requires extensive modifications
to the browser itself [43, 58, 61], which makes deployment in most
enterprises difficult.

Highly Targeted. Watering hole attacks are highly targeted and
the granularity of the adversary’s targets varies with different at-
tacks. For example, watering hole attacks may only target specific
victims at an organization, specific departments of an organization,
or a set of organizations. Unfortunately, during the early stages of
an investigation, the motive of the attack is unknown and identify-
ing who is targeted by the attack and which individuals fell victim
to the attack is challenging. However, identifying the victims of
the attack is arguably the most important part of the forensic in-
vestigation, since it allows the forensic analyst to determine which
user sessions they should prioritize. Also, when the forensic ana-
lyst spends time investigating logs related to untargeted users, the
investigation is prolonged.

3 MNEMOSYNE
3.1 Overview

MNEMOSYNE is a forensic analysis engine that completes a post-
mortem analysis from within the targeted organization with mini-
mal external information. The only information that Mnemosyne
requires is the domain name of the compromised website. This
design choice was made based on the fact that during the early
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Figure 1: Overview of MNEMOSYNE’s architecture.

stages of the investigation, information related to malicious do-
mains used by the adversaries or the modifications made to the
compromised domain will be limited and potentially inaccessible
to the forensic investigator. Also, the audit logs related to how the
website was compromised are external, and in some real-world
cases, communication between all entities involved was limited [7].

An overview of our system is provided in Figure 1, which il-
lustrates its three essential components. The first component is
the browser auditor daemon, which is deployed on each endpoint
system at an organization to monitor web-browsing activities. The
auditor daemon passively collects audit logs throughout the user’s
browsing sessions without the need to alter the browser. Next, the
audit logs from each endpoint are collected and stored on a backend
server responsible for maintaining security auditing information.

The next module of MNEMOSYNE is the versioning system that
tracks and analyzes the external website’s behavior. The first phase
in the analysis is the domain versioning system, which works with
the browser-level audit logs to determine when the website was
compromised and what modifications the adversaries made to the
website. Specifically, the versioning system reconstructs how the
compromised website changed over time. Notably, our goal is not
to create a single version each time a minor change is observed in
the underlying audit logs. Instead, our versioning system helps the
forensic analyst quickly identify the window-of-compromise, or
the version that includes the adversary’s modifications to the com-
promised website that introduced some attack-controlled content.

Next, MNEMOSYNE provides a version-prioritization approach
that prioritizes versions based on their likelihood to be the version
that truly represents the window-of-compromise. Developing a
prioritization scheme is essential because prior studies have shown
that the dwell time can be excruciatingly long, in some cases lasting
over 53 months [32]. Meanwhile, benign updates, which will lead to
MNEMOSYNE generating new versions, will also occur, which leads
to a challenge in identifying which domain-version actually repre-
sents the window of compromise and which versions are related to
the natural evolution of the website. The last stage of MNEMOSYNE’s
analysis is its user-level analysis module, which takes a suspicious
domain version and identifies how this domain version behaved
differently based on the user that was visiting the site.

3.2 Threat Model and Assumptions

We envision MNEMOSYNE being deployed in enterprise organiza-
tions that have a high risk of being targeted by a sophisticated,



Object Type Attributes Relationship Example
Frame securityOrigin, Attached Frame — Frame
sessionld, URL CompiledBy Script — Frame
Iframe securityOrigin, Created Script — Frame
sessionld, URL Download Frame — File
Remote Host  2nd-level domain, Navigated Frame —s> Frame
domain
. = Opened Frame — Frame
File path, remoteOrigin
Request Parser — Resource
Resource URI, type i
A . Response Resource — Script
Script hash, sourceOrigin, . .
URL. sessionld SessionOpened  User — Session
Session user-agent,  times- Located Resource — Host
tamp (b) Relationship bet bject
HTML Parser - ) Relationship between objects.
User -

(a) Graph Objects: each object has
aunique ID. The bolded attribute
represents the object’s identifier.

Table 1: Browser-based provenance graph objects, relation-
ships, and key attributes.

nation-state-level attacker. MNEMOSYNE is capable of logging details
about users’ browsing activities. This means a trade-off between
security and privacy must be found. In the envisioned deployment
scenarios, it is a reasonable assumption that the executives would
be willing to accept a potential reduction to employee privacy to
achieve a higher level of security. Furthermore, the audit logs cap-
tured by MNEMOSYNE can be encrypted and securely stored on a
file server. A different encryption key can be used for each website
and for different time windows. These keys can then be stored in
a key escrow, as proposed in previous work [58]. This allows the
release of only those keys that are truly needed to enable a forensic
investigation.

We also assume that the browser audit logs are stored securely,
e.g. using append only log files [15], and thus cannot be tampered
with even if the browser is later compromised. Also, we assume
that at the time of the watering hole attack, the browser itself is
not compromised and the audit logs can be trusted as correct (note
that assuming the integrity of the trusted-computing based (TCB)
is common in the auditing community [20, 22-27, 29, 30, 33, 34, 39,
40, 42, 43, 45, 47-52, 58, 61, 63, 66]). If the browser is compromised,
MNEMOSYNE can still record correct audit logs related to the attack
up until the point when the browser is exploited, thus allowing
a forensic analyst to reconstruct the attack setup phase. In our
extensive evaluation, we demonstrate that by only recording the
“setup” phase of a drive-by download attack campaign MNEMOSYNE
is still capable of identifying the victims of the attack.

3.3 Browser-level Causality Graph

As a first step to enable attack reconstruction, we construct a causal-
ity graph based on the browser-level audit logs, which will be used
during the postmortem analysis and investigation. The browser
objects are defined as nodes in the audit graph, as in Table 1a, and
the causal relationships between the objects are defined as edges
in the graph, as listed in Table 1b. The graph presents the chain

Domain: Domain Domain: Domain:
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Endpoint: Endpoint: Endpoint: Endpoint: Endpoint:
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(5) Request-
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Script: 271
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(14) Attached
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Figure 2: MNEMOSYNE’s browser-based causality log graph of
the social-engineering component used by APT-32 to attack
targeted visitors.

of browser events that occurred and the causal relations they in-
duced. To demonstrate MNEMOSYNE’s capability to reconstruct a
web-based attack, we demonstrate how MNEMOSYNE’s logs are able
to reconstruct the social-engineering component of the motivating
example in Figure 2. The social-engineering attack has three major
stages. The first stage fingerprints the user to identify if they match
the targeted profile. If so, the second stage blurs the original site’s
content and injects a malicious overlay into the DOM that redirects
the user to a malicious, adversary-controlled site. The final stage of
the attack occurs when users navigate to the malicious website that
contains a malicious OAuth application. If the user is tricked into
granting permission to the malicious OAuth application, it grants
the adversaries full access to the user’s Gmail accounts.

3.4 Auditor Daemon

To ensure our system can be widely deployed in enterprise set-
tings, we take a different approach than the previous systems that
alter the browser (e.g., [43, 58, 61]), and rely on the existing debug-
ging interfaces provided by Chrome that do not require extensive
modifications to the browser. Specifically, we rely on Chromium’s
DevTools interface to extract information about the user’s browsing
session. Chromium’s DevTools Protocol allows tools to instrument,
inspect, and profile Chromium, Chrome, and other Blink-based
browsers. MNEMOSYNE's auditor daemon collects the necessary in-
formation related to the browser’s execution needed to reconstruct
the audit logs described in §3.3. A list of the Chrome namespaces
used to captured this information is in Table 8 in the Appendix.

3.5 Versioning System

The domain-based versioning system takes in the domain name of
the website that is suspected to have been compromised to launch
a watering hole attack. The domain versioning system has two
major components. First, the version reconstruction component re-
constructs client-side versions of the compromised domain (§3.5.1).
Second, the version prioritization component prioritizes the ver-
sions in terms of their likelihood of representing the compromised
version (§3.5.2). These two components are detailed below.

3.5.1 Version Reconstruction. The first step of the version recon-
struction component is to refine the audit graph to only include



TTP ID Severity Score Description & Pattern

User-Level Property Description

User Execution: User navigates to an unknown domain.
(p:Page) — Navigated — (t:Page)
where p.securityOrigin = domain

T1204.001  Medium 6

and t.securityOrigin ¢ Dy fie

User Execution: User Downloads unknown file.
(p:Page) — File-Download — (t:File)

where p.securityOrigin = domain

and t.remoteOrigin € Dy

T1204.002 Very High 10

Initial Access: Unknown iframe Injection
(s:Script) — Inserted — (i:Iframe) — Attached — (p:Page)
where (s.sourceOrigin € Dy or i.securityOrigin € Dy)

T1189 Medium 6

and p.securityOrigin = domain

Table 2: The set of TTPs used in Mnemosyne’s weighting sys-
tem.

pages related to the compromised domain. Specifically, we create
the set Pyomain = {p : p-securityOrigin = domain} where domain
is the compromised domain. Next, for all pages, pi € Pjomains
MNEMOSYNE performs a reachability analysis. The reachability anal-
ysis searches the browser causality graph, beginning at p;, to collect
all of the involved objects and network events that occurred when
loading the page. This query identifies the domain set, D, which is
the set of domains that were communicated with while pages in
P jomain Were loaded into the browser and identifies the earliest and
latest timestamps in which network events were made to a domain
d; € D. By extracting the timestamps from the relevant network
events, MNEMOSYNE can reconstruct a chronology profile, which
lists the domains in D in descending order by timestamps. Next, the
version reconstruction component converts the generated chronol-
ogy report into versions of the website. The versioning system
reconstructs versions based on the domains that were communi-
cated with while the page was loaded into the browser. To construct
versions of the website, our system breaks up the chronology report
into time windows and then aggregates domains together based on
the time the domain first interacted with the website. Specifically,
when a set of domains fall within the same time window, they are
aggregated into the same domain-version, Dy,.

DEFINITION 1 (DOMAIN VERSION). Given a time window, [ts, te],
and a webpage, p;, a Domain Version := {d € D : p; communicated
with d for the first time when loading p; in [ts, te]}

Manually inspecting the domain sets to determine the boundaries
of new versions is time-consuming and leads to analysis fatigue [23].
For this reason, we automated this process. We first rely on a profil-
ing phase that identifies the profile domain version, Dy, fize, which
represents the set of benign domains that are responsible for com-
monly serving content to visitors of the compromised website. We
define the time window required to learn D, i as the profiling
phase, which has a duration of w days. We provide a detailed dis-
cussion of how to appropriately calculate w in §8.1. After Do fije
has been learned, MNEMOSYNE begins creating new domain ver-
sions on the date that a new domain was observed. Additionally,
when multiple domains appear in the same day, MNEMOSYNE will
aggregate these domains into the same domain-version.

Version ID
Parent Version ID

A unique identifier for this version.
The parent version’s ID.

Page Set The set of page IDs assigned to this version.

A-Set The set of objects that were responsible for generating this version.
Size The number of pages assigned to this version.

User Set The set of users for this version.

Table 3: The metadata properties of a user-level version.

3.5.2  Version Prioritization. To make MNEMOSYNE more efficient
in locating the window of compromise, we prioritize the domain
versions in the order of their likelihood to be the version that
truly represents the window-of-compromise. This prioritization
analyzes each domain version independently to identify suspicious
behavior causally dependent on this domain version. We quantify
the suspiciousness of these behaviors using a weighting system.
Based on the behaviors found, an overall suspiciousness score is
defined for the domain version. The domain versions are then
placed in a priority queue based on their suspiciousness score. This
prioritization focuses the analysis on the most suspicious versions,
increasing the investigator’s efficiency.

Weighting System. MNEMOSYNE’s weighting system is TTP-based,
analogous to existing state-of-the-art, whole-system auditing ap-
proaches (e.g., Holmes [52] and Rapsheet [24]) in the sense that

it relies on matching browser-based audit logs to existing attack

patterns in the MITRE ATT&CK Framework [5]. The set of TTPs

MNEMOSYNE relies on to detect suspicious domain versions and the

patterns required to match these TTPs to the browser-level audit

logs is defined in Table 2. For each domain version D,, MNEMOSYNE

calculates a suspiciousness score. First, MNEMOSYNE conducts a

reachability analysis, starting from the set of domains in D, to

identify the set of pages impacted by this domain version, which

we call Pyfrecred- For each page in Py fecred, We search for audit

events that match a TTP pattern. The score of the domain version

is the sum of the severity scores of the matched TTPs defined in

the Score column of Table 2.

3.6 User-Level Analysis

The final stage in Mnemosyne’s analysis is the user-level analysis.
The purpose of the user-level analysis is to identify how a domain-
version behaved differently based on the user that was visiting the
compromised website, with the ultimate goal of minimizing the
effort required by the forensic analyst to determine which users
were unaffected, targeted, or victims of the attack. For each domain
version, Dy, pulled from the priority queue, and the set of pages,
Paffected> associated with it, the user-level analysis clusters pages
in Pyt fecreq that had similar behaviors while they were loaded into
the browser. This clustering minimizes the number of pages the FA
needs to analyze by aggregating pages with similar behaviors. The
FA can then analyze clusters as one and assess and make decisions
about entire clusters of pages instead of only a single page, reducing
the amount of effort and time required to complete the investigation.

The clustering approach has two stages. The first stage extracts
a features set from each page in Py fecreq- In the second stage, a
differential analysis is completed over the feature sets extracted.



Domain: Domain: Domain: Domain:
upyter.eflinwood.topj jsdelivr.net jupyter.eflinwood.topj jsdelivr.net
Endpoint: Endpoint: Endpoint: Endpoint:
adv.js fingerprint.js adv.| js fingerprint.js
] A B
: Response Hequesl . HGSPonse Request
Flet.quesl Response Request DOM Insertion
Response
DOM Insertion

Scnpt
flngerprlnt js

: Seri
adv.js DOM Insertion
Complled SC

T f\nge

: Page:

Parsed -+ )@ Compiled

(@)

Scnpi
adv js
Compl\ed

Page: -Compiled
Parsed asean.org

Attatched

Domain: Domain: =
jupyter.eflinwood.topj jsdelivr.net iframe:
account.google.com
Endpoint: Endpoint:
adv.js fingerprint.js
T
Script: T Response j Script:
adFeedback.js adFeedback.js
! Request Request ! Attached
DOM Insertion
DOM Insertion . Response  DOM Insertion
Script:
advjs__Ipom Insertion
iframe: Compiled Script: iframe:
Overlay fingerprint.js Overlay
Page: -Compiled Page:
Parsed asean.org Attatched malicious.com

User Navigation

(©

Figure 3: Three subgraphs related to visiting hxxps://www.asean.org during the window-of-compromise. (a) represents a visit
by a non-targeted user, (b) represents a visit by a targeted user, and (c) represents a visit by a victim of the attack.

The differential analysis phase generates clusters of pages. We call
these clusters user-level versions; the term cluster and user-level
version are used interchangeably.

DEFINITION 2 (USER-LEVEL VERSION). A User-Level Version :=
{Pi € Paf fected, metadata(p;) : all p; share the same feature set}.

For each user-level version, a set of metadata properties, defined
in Table 3, is tracked. We will provide additional information about
each property during the remainder of this section. The final step
of the differential analysis is to insert the user level versions into
a versioning tree, where nodes are user level versions and edges
represent dependencies between the versions. The benefit of this
version tree is that it orders the versions and allows the forensic
analyst to quickly determine what modifications were made to
create the new version and the ancestry of each version.

3.6.1 Feature Extraction Phase. For each page p; in Pyt fected> We
extract a set of features. Specifically, MNEMOSYNE collects all paths
from the domains in D, to the page p; by querying the audit graph.
The result of this query is the set of all paths, PATHSdei, where
d € D,. For example, in Figure 3.a we see the results of this query
on the domain version, D, = { jupyter.elfinwood.top, jsdeliver.net
}. It returns four paths (cyan, purple, green, and blue). The set of
paths returned from the causality query are combined to create a
subgraph, Sp,. This process is repeated for all pages in Pyffecred-
Figure 3 shows the subgraphs for three example pages. (a) represents
a page where the user was unaffected by the attack, (b) represents
a page where the user was targeted, which is highlighted in orange,
and (c) represents a page where the user was a victim of the attack,
which is highlighted in pink. The next step converts the subgraph,
Sptoa feature set, S},. For each node in Sp, we extract its identifier.
The identifier for each node is the bolded attribute in Table 1a. For
the edges, we create a three tuple containing the relationship type,
and the identifier of the start and end nodes. The feature set consists
of the nodes’ identifiers and the relationship tuples for the page
pi. This process is completed for all the related subgraphs. After
creating ‘§Pi for all pages, the next task is to assign each page to its
initial user-level version. A page is assigned to its initial user-level
version based on its feature sets. Specifically, pages are assigned to
a user-level version, Uy, if S},i == U,.A. If no match is found, a new

user-level version will be created, this page will be assigned to it,
and Uy.A will be set to Sy, .

3.6.2 Differential Analysis. The final phase in MNEMOSYNE’s anal-
ysis is differential analysis. Given the initial user-level version set
UserVersions, the differential analysis creates a version graph,
where each node represents a unique user-level version and the
edges represent ancestral relationships between the versions in
the graph. For our analysis, an ancestral relationship implies the
resources in the parent’s A-Set were also observed by pages in the
child’s pageSet. The advantage of presenting the versions embedded
into a version graph is that it allows the FA to assess the modifica-
tions and differences made between the child and parent versions,
and quickly determine which users observed which behaviors.

The differential analysis is initiated by selecting the root ver-
sion from the set UserVersions, shown on line 5 of Algorithm 1.
The selection of the root version is based on size of the user level
version’s pageSet. The version with the largest page set is selected
to be the current version. The current version will then be in-
serted into the VersionGraph. Next, the algorithm iterates over
the remaining user-level versions. For each user-level version, u, €
UserVersions, the algorithm will determine if current is a par-
ent version of u,. current is considered a parent when the intersec-
tion of uy.A-Set and current.A-Set is non-empty, as shown on line
10. When a parent version is found, the differential analysis updates
the user version’s A-Set. Specifically, a diff operation is performed
on the user version’s delta set, where u,.A := u,.A —current.A This
operation prevents duplicating the same behaviors, which would
increase the FA’s workload and prolong the analysis. After updating
the A-set of u,, we compare u,’s A-set to the remaining user ver-
sions’ A-set. If they are equivalent, we run a merge operation and
merge the two user-level versions. This step maximizes the cluster
sizes, minimizing the feature sets that the FA has to manually ana-
lyze. We repeat this process, assigning the version with the largest,
remaining page set to current, until every user-level version has
been inserted into VersionGraph. The output of this differential
analysis is the VersionGraph for the user-level versions, which
the forensic analyst can use to quickly assess the different behaviors
exhibited by the domain version they are evaluating.



Algorithm 1: Differential Analysis

Input: UserVersions The set of initial user-level versions.
Result: VersionGraph: The resulting Versioning Graph.
1 begin

2 VersionGraph « list();

3 while |UserVersions| > 0 do

4 // Initialize current based on pageCount.

5 current = max(UserVersions.pageCount)

6 // Insert current version into VersionGraph.

7 VersionGraph.insert(current);

8 foreach u, in UserVersions do

9 // Determine if current is a parent of u,.

10 isParentVersion = u,.deltaSet N current.deltaSet

1 if |isParentVersion| > 0 then

12 // Add current as a parent to version u,.
13 uy.parents.append(current.versionId);

14 // Complete diff operation on version u,.
15 u,.deltaSet = u,.deltaSet - current.deltaSet;

16 foreach m, in UserVersions do

17 if my == u, V m, == current then continue ;
18 else if u,.deltaSet == m,.deltaSet then

19 // Complete Merge on u, and m,.
20 uy.pageSet.append(m,.pageSet);

21 uy.userSet.append(m,.userSet);

22 UserVersions.remove(m,);

23 end

24 end

25 end

26 end

27 // Remove current version from UserVersions.

28 UserVersions.remove(current);

29 end

30 return VersionGraph

31 end

4 EVALUATION

Our evaluation addresses the following research questions:

e How effective is MNEMOSYNE at reducing the analysis scope
of the forensic investigation?

o How does the benign evolution of websites affect MNEMOSYNE
analysis?

e What is the runtime performance overhead of MNEMOSYNE’s
auditing daemon and analysis?

e What are the data storage requirements for MNEMOSYNE?

4.1 Data Collection

The highly-targeted nature of watering hole attacks makes them
extremely difficult to detect in the wild, which results in difficulty of
collecting data on them. To overcome this, we developed a scalable
testbed that is capable of simulating sophisticated watering hole
attacks on a large organization. This testbed has the capability to
make arbitrary modifications to an otherwise benign website and
simulate visits to compromised websites. To simulate a compro-
mised website, we relied on Chromium’s DevTool’s Fetch names-
pace, which can intercept and modify network requests made by
the browser. Our testbed supports directly modifying HTML pages
and scripts on-the-fly to support various modification techniques.
This allows the testbed to simulate malicious modifications being
made to the website. To simulate visits, we developed a driver based
on puppeteer [8]. During a visit, the driver navigates to up to 15

webpages on the site. However, only visiting webpages limits exe-
cution coverage because modern webpages are highly-dynamic and
event-driven. To address this, our driver simulates JS-based events
while visiting the page. Also, the driver automatically emulates
different browser/OS combinations, including mobile operating
systems (e.g., screen size and other system properties are adjusted
according to the emulated system). Finally, we designed our testbed
to be scalable by making each crawler a container-based applica-
tion, which allowed us to execute multiple crawlers in parallel. Each
container contains a headless Chromium browser and the driver
that simulates a visit to the compromised domain.

4.2 Datasets

Leveraging the watering hole testbed discussed in §4.1, we collected
datasets to develop 7 attack scenarios discussed in §4.2.1 and two
benign datasets discussed in §4.2.2.

4.2.1 Attack Scenarios. To extensively evaluate MNEMOSYNE, we
developed 7 attack scenarios inspired by watering hole attacks
that have been reported in the wild. A detailed description of the
attack scenarios is provided in Table 4, including the website that
we simulated being compromised and a reference to the real-world
attack that inspired this scenario. For each attack scenario, we
collected data for at least two weeks, and each scenario had three
phases. During the first phase, the website was benign, and no
malicious modifications were made. The purpose of this phase
was to collect the auditing information necessary to model the
benign behavior of the website. The second phase simulated a
reconnaissance phase, where the website was compromised. At this
point, the simulated attacks had not targeted any users. The final
stage was the targeting phase, where the attack actively sent the
malicious payload to victims. We provide statistics related to the
size of the attack graph for each scenario and important crawling
statistics in Table 5. On average, we simulated 1,844 visits during
the attack scenarios. Also, we found that, on average, 1,941 distinct
URLSs related to the compromised domain were visited. Finally, the
average graph size for each attack scenario was 6.2M and 11.0M
nodes and edges respectively.

4.2.2  Benign Datasets. The benign datasets contain simulated vis-
its to a large set of benign websites. We collected two datasets,
which we will call “Categories” and “Alexa”. The details of each
dataset is described below.

Categories. The categories dataset was developed by crawling 900
websites from February 6th, 2020 to August 18, 2020. Each website
crawled had an associated category tag, where the category tag
represents the website type (e.g., News, Sports, etc.). To categorize
the websites, we leveraged DMOZ; the most comprehensive, human-
edited directory of the Web [3]. The 900 websites were randomly
selected. The number of webpages in each category is provided in
Table 9 in the Appendix. After removing websites that returned an
error, we had a dataset of 830 valid websites that included 278,177
unique pages related to the websites.

Alexa. The Alexa dataset was developed by crawling the Alexa
1k from July 13th, 2020 to August 18, 2020. In total, we collected
120,245 unique pages related to these websites.



Attack Scenario

Website & Description

Reference

Malicious OAuth
Access

Clickjacking
Malicious Software

Update

Credential Harvesting

Keylogging
Tabnabbing

Driveby

permissions.

www.cfr.org — The adversary injected a malicious script into the homepage. If users were targeted, the original content [41]
of the page was blurred, and a malicious overlay was injected into the DOM. If the client interacted with the overlay,

it redirected them to an attacker-controlled website hosting a malicious OAuth app that requested sensitive email
www.acumen.org — The attack embedded a malicious iframe onto the page, which redirected users to a malicious [54]
website, hosting a malicious OAuth app. The app requested sensitive Gmail permissions.

www.energy.gov — The adversary injected a malicious flash update onto the webpage. Victims of the attack were [38]
tricked into downloading a trojanized version of Adobe Flash.

www.cipe.org — The adversary manipulated the original webpage’s DOM to mimic a Google login page. Victims of the [11]
attack would be tricked into leaking sensitive credentials.

www.xero.com — The adversary injected a keylogger into the webpage, which logged all keystrokes by targeted clients. [55]
www.thebanker.com — The adversary used a tabnabbing attack to distract the user. Next, the attackers injected an [21]
iframe, which mimicked the institution’s login page. The attack victims leaked their sensitive email credentials.
www.zingnews.vn — The adversary injected a malicious script into the homepage. If the users matched the client [31]

profile, the malicious script injected a 1x1 iframe into the DOM, which navigated to a malicious website that exploited

CVE-2020-6405 to complete a drive-by download attack.

Table 4: Description of each attack scenario and the corresponding case in the wild.

. Visit Pages  Distinct Script Network

Attack Scenario Nodes/Edges Sessions Visited URLs Instances Events
Malicious OAuth Access ~ 9.20M / 16.1M 5.37K 57.8K 4.96K 8.80M 3.10M
Clickjacking 4.40M / 5.90M 950 7.66K 267 3.99M 658K
Malicious Software Update 628K / 1.30M 1.00K 8.69K 640 547K 374K
Credential Harvesting 770K / 1.60M 927 8.40K 364 710K 449K
Keylogging 209M/33.8M 191K 100K 533K 18.8M 6.20M
Tabnabbing 6.70M / 15.0M 2.18K 83.2K 741 6.20M 4.30M
Driveby 952K / 3.10M 580 6.72K 1.29K 742K 926K
Average 6.20M / 11.0M 1.84K 39.0K 1.94K 5.7M 2.31M

Table 5: Graph statistics for each attack scenario.

4.2.3 Data and Evaluation Limitations. There are some potential
limitations to pay attention to when relying on simulated attack
scenarios to complete an evaluation. First, when visiting each site in
the attack scenario, the navigation through different pages on this
website was randomized. In practice, website visitors will typically
follow specific and routine visiting patterns to complete specific
tasks. However, MNEMOSYNE’s analysis does not rely on the vis-
iting pattern of the users, so this is not expected to represent a
significant issue in practice. Next, our testbed does not support
automatically logging into a webpage. Since portions of a website
may require authentication to view, some portions of a website may
be unavailable to our testbed. While this does limit the visibility of
the website in our experiments, it will not be a significant issue in
practice. This is because, in a real-world deployment, MNEMOSYNE
would have visibility to these portions of the website once the user
logged into the site, since MNEMOSYNE will record audit logs as
the user interacts with webpages through the browser. Finally, one
limitation of our testbed is content tailored to a specific user for be-
nign use-cases. While our testbed can simulate different users, this
simulation mainly alters the User-Agent string when visiting the
website. Unfortunately, for websites that distribute content based
on profiling the user or requiring the user to log in, our current
implementation of emulating different users will most likely lead
to the websites not serving "user-specific" content in a meaningful
way. However, we believe benign use-cases of user-specific content

will not have a large affect on MNEMOSYNE'’s analysis because, while
websites routinely serve user-specific content, this content will be
served off the same set of domains. Since MNEMOSYNE would iden-
tify these domains during its profiling phase, these user-specific
modifications would be filtered out of the analysis scope.

4.3 Attack Scenario Investigation

4.3.1 Forensic Analysis Scope Reduction. To measure the efficiency
gains that Mnemosyne provides, we completed an empirical evalu-
ation to quantify how much of the analysis space is reduced when
using MNEMOSYNE to complete the investigation.

Defining the Analysis Space. We define the analysis space as
the set of domains and scripts related to each attack scenario in
Table 4. We want to point out that the number of scripts reported
for each attack scenario is the number of unique script URLSs, not
to be confused with the number of script instances. The choice to
focus on domains and scripts is based on a preliminary study we
conducted with 5 security-trained professionals. The purpose of
this study was to assess how different professionals approach foren-
sic investigation tasks. To this end, we assigned an investigation
task to each participant, provided them access to the browser logs,
and asked them to determine the window-of-compromise and the
attack’s victims. Each participant was provided with access to a
graph database that contained the attack scenario logs and a graph-
ical interface? for interacting and making queries to the database
to enable the investigation. After each participant completed the
task, we conducted an exit interview to discuss what strategies the
participants adopted to perform the investigation. We found that
most participants used a two-phased approach. First, they filtered
out well-known domains. Then, for the remaining domains, they
analyzed the scripts served by those domains. Because of this ap-
proach, we consider the number of domains and scripts involved
in the attack scenario to play a larger role in the analysis time
compared to other types of resources (e.g., images, CSS files, etc.).

Zhttps://neodj.com/developer/neodj-browser
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Raw

manual++

MNEMOSYNE

Attack Scenario # of Domains # of Scripts  # of Domains

# of Scripts{

# of Scriptsi

# of Domains

# of Scripts ‘ # of Versions

Malicious OAuth Access 59 6,243 45 (-23.73%) 5,814 (-6.87%) 477 (-92.36%) 4 (-93.22%) 6 (-99.90%) 5
Clickjacking 18 523 12 (-33.33%) 507 (-3.06%) 116 (-77.82%) 2(-88.89%) 5 (-99.04%) 3
Malicious Software Update 23 1,102 20 (-13.04%) 1,086 (-1.45%) 318 (-71.14%) 1(-95.65%) 63 (-94.28%) 2
Credential Harvesting 20 534 15 (-25.00%) 521 (-2.43%) 112 (-79.03%) 1(-95.00%) 85 (-84.08%) 2
Keylogging 11 1,761 11(0.00%) 1,761 (0.00%) 37 (97.90%) 2(-81.82%) 6 (-99.66%) 3
Tabnabbing 64 27,477 48 (-25.00%) 27,259 (-0.79%) 26,262 (-4.42%) 2(-96.88%) 13 (-99.95%) 3
Driveby 571 3,230 567 (-0.70%) 3,055 (-5.42%) 350 (-89.16%) 2(-99.65%)  2(-99.94%) 3
Average 109 5,838 103 (-6.27%) 5,715 (-2.21%) 4,554 (-22.01%) 2(-98.17%) 26 (-99.56%) | 3

Table 6: A detailed performance comparison between manual++ and MNEMOSYNE in terms of number of domains and scripts a
forensic analyst needs to investigate. ScriptsT are all scripts related to the corresponding domain. Scripts: are the set of scripts
that have behaviors attributed to them (e.g., network requests, DOM insertions, etc.). MNEMOSYNE can reduce the analysis
scope significantly, for example, (-99.56%) means reduction based on the raw data.

Developing a Baseline. Following the practical strategies ob-
served during this study, we developed a baseline system to com-
pare against MNEMOSYNE, which we call manual++. manual++
attempts to generalize the approaches used by the different partic-
ipants to perform a forensic investigation based on browser logs.
Specifically, manual++ first collects all domains that communicated
with the compromised website. Next, it filters out any of these do-
mains that are listed on the Alexa 10k, since they are highly likely
to be benign. Next, it further reduces the number of domains by
filtering out domains that only served static content (e.g., images,
fonts, CSS files, etc.).

Measuring Analysis Reduction. To measure the analysis reduc-
tion MNEMOSYNE provides, we compare it to manual++. We focus
on the number of domains and scripts that would require manual
inspection when using MNEMOSYNE, compared to manual++. An
extensive reporting of the results is provided in Table 6. The number
of domains and unique script URLs found in each attack scenario is
reported in the raw column. We see that MNEMOSYNE was able to
filter out, on average, 98.17% of the domains while manual++ was
only capable of filtering out 6.27% of the domains. It’s even less for
the case of Driveby because the website employs ads that generate
random domain names. Next, we inspected the number of scripts fil-
tered out of the analysis space by MNEMOSYNE and manual++. Our
experiments show that MNEMOSYNE was able to filter out 99.56%
of the scripts from the analysis space, which shows a significant
reduction in the number of scripts required for manual analysis
by the investigator. To measure the number of scripts filtered by
manual++, we provide two results in columns Scriptst and Scriptst.
Scriptst provides the number of scripts remaining after applying
manual++’s filtering. We see that on average, only 2.21% of scripts
were filtered by manual++. Also, we provide a second set of re-
sults in column Scriptst. The results presented in column Scriptsi
were calculated by adding an additional filtering stage, which was
more aggressive and filtered out scripts that did not have behaviors
causally attributed to them (e.g., they made no network requests or
DOM insertions). The results show that applying this additional fil-
tering stage can reduce the number of scripts by 22.01% on average,
and in some cases, such as the Keylogging scenario, this additional
filtering stage performs well. However, we also see that in the Tabn-
abbing attack scenario, it performs extremely poorly, and was only

able to filter out 4.42% of the scripts in the analysis space, while
MNEMOSYNE was able to filter out 99.95% of scripts. We also found
that the naive approach used by manual++ to filter out domains
based on the Alexa 10K led to a false-negative in the Malicious
Software Update attack scenario, because the adversaries served the
malware from a Git repository on hxxps://www.github.com. On the
other hand, MNEMOSYNE correctly identifies this attack component.
These results show that MNEMOSYNE can significantly reduce the
scope of the analysis space that requires manual analysis for the
forensic investigation.

4.3.2  Attack Scenario Domain Versions. Next, we investigated the
number of domain versions generated for each attack scenario. For
each scenario, we set w = 1 (i.e., we used one day for the profiling
phase). We found that a low number of versions were generated for
each attack scenario, as reported in the last column of Table 6. One
outlier was the Malicious OAuth Access Scenario, with 4 versions
after removing the core domain-version. We further investigated
and found that there were 3 new benign versions generated. These
versions were generated shortly after the profiling phase, which
means this phase was too short for this website. This is reasonable
since this scenario compromised hxxp://www.cfr.org, which was
a larger website and had 4,957 distinct URLs visited during the
scenario. Also, the version prioritization prioritized all 3 of these
benign versions lower than the malicious version.

4.3.3  Version Prioritization. In all attack scenarios, our system
accurately prioritized the compromised version over the benign
versions, with the one exception of the Keylogging Attack Scenario.
This shows MNEMOSYNE’s version prioritization approach was effec-
tive, and we investigated each attack scenario to determine exactly
why the prioritization was effective. The Malicious OAuth Access at-
tack lured the user into navigating to jupyter.elfinwood.top’, which
was captured as a cross-origin navigation in the causality graph.
As this cross-origin navigation was attributed to a script served by
Jjupyter.elfinwood.top, it flagged TTP T1204.001, which incremented
its suspiciousness score. Finally, for the Clickjacking and Tabn-
abbing scenarios, MNEMOSYNE identified TTPs T1189 & T1204.001

3 jupyter.elfinwood.top was the malicious domain used throughout the attack scenarios.



User-level Versions

Unaff.- Tar- Unaff.-

Attack Scenarios

Unaff. ~ Tar.  Vic. Tar. Vic.  Vic.
Malicious OAuth Access v v v
Clickjacking v v v
Malicious Software Update v v
Credential Harvesting v v v
Keylogging v v v
Tabnabbing v v v
Driveby v v v

Table 7: A report of the user-level version types generated
during each attack scenarios.

being causally dependent on the attack scenarios’ respective mali-
cious domain version. For the Malicious Software Update attack, it
successfully detected TTP T1204.002. Finally, for the Driveby sce-
nario, we detected TTP T1189 when the iframe was injected into
the DOM. MNEMOSYNE was not effective in prioritizing the Keylog-
ging attack scenario since the attack did not insert an iframe nor
trick users to do anything, but rather sent network requests in the
background. We believe this is acceptable, as version prioritization
does not aim to determine the compromised version directly but
aims to prioritizes domain-versions relying on identifying typical
suspicious events that are related to social-engineering attacks.

4.3.4  User-Level Versions. To measure the effectiveness of the User
Level Analysis, we determine how effective it is at developing “uni-
form” clusters. We define a cluster as uniform if the pages mapped
to it only represent unaffected users, targeted users, or victims. We
define six different types of user-level versions; unaffected users
(Unaff), targeted (Tar), and victim (Vic) versions only include a
single user-type. Next, the groups unaffected-targeted (Unaff-Tar),
targeted-victim (Tar-Vic), and unaffected-victim (Unaff-Vic) are
mixed user-level versions. Mixed groups are generated by the user-
level analysis when there is not enough context in the underlying
audit logs to accurately distinguish between the two user types.
The results are shown in Table 7, where each column represents
a different category of user-level versions. We see that in 6/ 7 at-
tack scenarios, MNEMOSYNE generates ideal “uniform” clusters. For
the Malicious Software Update attack scenario, MNEMOSYNE cre-
ated two user-level version types, a victim user-level version and
a mixed unaffected-targeted version. To understand this, we an-
alyzed the attack scenario in more depth and found that the at-
tack relies on inserting an overlay tag into the page to lure the
user into installing the malicious file. Since MNEMOSYNE relies on
an instrumentation-free approach for auditing the browser, it has
less visibility in terms of DOM modifications compared to prior
work [43] and unfortunately could not attribute the insertion of the
overlay to a specific script. However, since file download events
can be detected, MNEMOSYNE is able to narrow down the analysis
space to identify all the users that were victims of the attack.

4.4 Benign Version Analysis

Next, we completed a study to evaluate the number of versions
reconstructed over an extended time period. To achieve this, we
evaluated MNEMOSYNE’s domain-version reconstruction using the

benign datasets with w = 1. The average number of versions recon-
structed per category is shown as the solid triangle in Figure 4. The
light yellow box shows the five-point-summary for the Alexa and
Categories dataset. We found that news websites have the highest
average with 4.33 versions generated during the crawling period,
while gaming sites only had 1.52 versions. The average number
of versions generated in one month is 2.15 for the Alexa Top 1k.
An extreme outlier, hxxp://auctiongr.com, in the shopping category
generated 22 versions. This website was a shopping site back in
February 2020 and only generated one version till March. How-
ever, the domain was registered to a porn and malvertising site in
June 2020, and started adding malicious domains frequently. There
are 7 websites considered outliers, for the Alexa category, which
have more than 6 versions generated in one month. Among the
7 websites are 6 News websites that are listed in Table 11 in the
Appendix. We believe this is a reasonable outcome, since websites
that fall into the News category need to frequently add new content
to stay up-to-date on current events. The other one is a computer-
themed forum-like website which updates its content frequently
as well. This experimental evaluation shows that MNEMOSYNE’s
domain-versioning system can be effective for long periods of time.

4.4.1 False-Positive Analysis. Benign updates made after the pro-
filing phase will generate a new domain version. We completed an
experimental evaluation to assess how often benign updates would
be flagged as suspicious. To complete this experiment, we used the
benign versions discussed in §4.4. We inspected 3,663 benign ver-
sions generated across 1,830 websites. We found that 14.12% of the
benign versions were flagged as suspicious. We further investigated
the flagged benign versions and found that 2.38% of the versions
were flagged due to cross-origin navigation to an unknown domain,
while 11.74% of the flagged domains were related to anomalous
iframes being injected into the DOM. However, in almost all cases
the iframes injected were ad-related. We found that by checking
the iframe’s src property, against a white list of 15 domains (listed
in Table 14), it allowed us to filter out 9.15% of the iframes related to
ads. Finally, after applying the white list filtering approach we find
that only 4.97% of the benign versions were flagged as suspicious.
Since the analyst will only need to investigate benign versions re-
lated to the compromised version, this shows that benign updates
will not significantly increase the time of the investigation.

4.5 Runtime Performance

To evaluate the runtime performance of the auditing daemon, we
measured the page load time for the top 1,000 most popular websites
according to Alexa.com, using out-of-the-box Chromium version
80.0.3987.163. The page load metric is important because previous
studies have shown that a slow page load time can lead to frustrated
users and drive websites’ revenue lower [19]. For each site, we con-
ducted 10 trials, both with and without our auditor attached. Prior
to measuring the page load time, we loaded the homepage of each
site into the browser so that it would heat up the browser’s cache.
The purpose of this was to minimize the influence that potential
network latency variations would have on the experiment. It is
important to notice that MNEMOSYNE logs web requests regardless
if the object was fetched from the cache or the actual server, so
the time spent within MNEMOSYNE’s logging functions will be the
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for each website for the Categories and Alexa datasets, with
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Figure 5: The runtime performance overhead induced on the
page load by MNEMOSYNE for the Alexa 1k. (a) presents the
runtime overhead increase for the page load. (b) provides the
absolute time induced by MNEMOsYNE. Whiskers are set to
(0%, 95%).

same whether an object is retrieved from the cache or directly from
the network.

The experimental results are presented as a five-point-summary
in Figure 5, with (a) presenting the overhead percentages compared
to loading a page while MNEMOSYNE is off, and (b) presenting the
absolute time induced by MNEMOSYNE on the page load. We found
that MNEMOSYNE’s auditor daemon had a low performance over-
head of only 2.93% on average and a 95th-percentile overhead of

9.80%, which is similar to the overhead introduced by previous
work [43]. Additionally, (b) shows that on average MNEMOSYNE
increases the load time by only 0.04s. However, we found two out-
liers, hxxps://www.tripadvisor.com and hxxps://www.atlassian.com,
which had page load overheads that were slightly over 25%. We
spent a significant amount of time assessing why these two cases
were outliers. This included toggling the DevTools namespace to
identify exactly which namespace(s) were causing the performance
overhead. We found that the Network and Debugging DevTools
namespaces appear to be contributing the most to the overhead
induced. Unfortunately, a more fine-grained approach to identify
exactly which other DevTools hooks were contributing to the over-
head and by how much would require instrumenting Chromium
itself. Since this outlier overhead was observed only on 2 out of
1,000 websites, we leave this detailed analysis to future work.

It is important to notice that MNEMOSYNE leverages only a small
set of DevTools hooks within a small set of namespaces, namely
Network, Page, Debugger, and Target. Therefore, runtime per-
formance could be further optimized by developing a customized
Forensics DevTools namespace, which would only activate the
hooks that are necessary for the logging, while avoiding the over-
head introduced by calls to other unused hooks that occur when
other DevTools namespaces are present. In summary, our perfor-
mance evaluation shows that MNEMOSYNE has a reasonable over-
head, especially for a prototype, and could be deployed in real-world
scenarios without significantly affecting the user’s browser experi-
ence.

Next, we measured the performance of MNEMOSYNE’s automated
log analysis process (see §3.5 and §3.6) on a standard laptop with In-
tel I7-8700B CPU running at 3.2 GHz and 32GB of physical memory.
On average, the log analysis process takes less than 5 minutes for a
graph of 6.2M nodes and 11.0M edges. Additionally, a breakdown
of the runtime performance for every attack scenario is provided in
Table 12. This shows the runtime performance for analyzing each
attack scenario is efficient.

4.6 Storage Overhead

To measure the disk space overhead, we ran MNEMOSYNE'’s auditor
for a 50-minute browsing session and visited 10 heavily dynamic
and popular websites. The websites used are listed in Table 13.
The compressed version of MNEMOSYNE’s audit logs for the entire
browsing session was only 3.1 MB. This means that, on average, the
disk space requirement for MNEMOSYNE is only .06 MB per minute
for highly active browsing sessions. If we assume MNEMOSYNE is
deployed in a typical enterprise environment, it would only require
28.8MB of storage for a single device in an 8-hour work day. If we
assume a 262 workdays per year, less than 7.4GB of disk space is
required to store MNEMOSYNE’s audit log per year. For an enterprise
network of 1,000 devices, only 7.4 TB of disk space is required to
store the entire dataset for a single work year. This experimen-
tal evaluation shows that MNEMOSYNE’s lightweight approach to
collecting audit logs has significant improvements compared to
JSGraph [43] and reduces the required storage by 82.4%.



4.7 Limitations

There are a few limitations that can occur with MNEMOSYNE. First,
the current version of DevTools only supports attributing DOM
modifications to scripts when the DOM node being inserted is an
iframe or a script node. However, despite limited capability in at-
tributing DOM modifications, MNEMOSYNE was able to perform
exceptionally well during our experimental evaluations. This limi-
tation was introduced because we chose not to introduce any code
changes to the browser. Although, prior approaches have shown
that fine-grained DOM modification attribution is feasible, it re-
quires extensive modifications to the Blink-V8 bindings layer of
the browser [43]. Since MNEMOSYNE was able to detect the attacks
in each scenario without requiring these extensive modifications,
we believe this was the correct design choice, as it clearly provides
significant advantages for deployment in real-world enterprise en-
vironments. Finally, we believe that if an enterprise network prefers
amore fine-grained auditing approach (e.g., using JSGraph [43]) the
generated audit logs could still be leveraged by MNEMOSYNE’s anal-
ysis modules with limited engineering effort. Second, MNEMOSYNE
relies on a domain-versioning technique to identify the window-
of-compromise. One potential limitation that could occur with
domain-versioning is that the adversary could orchestrate the en-
tire attack campaign off the compromised website. To achieve this,
the adversary would need to store all malicious scripts and pay-
loads on the compromised site’s origin. If the adversary chose to
use this approach, MNEMOSYNE’s domain-versioning would not be
able to identify the modifications made by the adversary. However,
we argue this is extremely unlikely. First, after reviewing a corpus
of over 300 well-documented sophisticated attacks carried out by
various APT groups, we found that all the watering hole attacks
modified the page such that it communicates with a new domain,
specifically, their C&C server [2]. A main reason for this is that it
provides the attacker the flexibility to update and modify the code
without having to make significant modifications to the compro-
mised website. By minimizing the modifications made, it decreases
the likelihood of their attack being detected on the compromised
server via the hosting organization’s firewall or data loss prevention
software (DLP).

Finally, as previously discussed in §3.2, MNEMOSYNE has limited
visibility when investigating attacks that rely on a drive-by down-
load. Specifically, MNEMOSYNE can only identify the "setup" phase
before the browser is exploited. However, despite only recording the
setup phase of a drive-by download attack campaign MNEMOSYNE
was still capable of identifying the victims of the driveby attack sce-
nario in our evaluation (§4.3.1), which demonstrates that MNEMOSYNE
has the capability of improving the efficiency of the analysis, even
when the adversary relies on a drive-by download.

5 RELATED WORK

Causality Analysis Systems. Developing systems that rely on
capturing attack provenance to investigate sophisticated attacks has
become a growing area of research [12, 18, 20, 25, 29, 30, 33, 39, 40,
42, 43, 48, 49, 58, 59, 61, 62, 66]. One shortcoming of whole-system
provenance systems is the dependency explosion problem, which
occurs when long-running processes communicate with many ex-
ternal entities. To address dependency explosion, several works

have proposed partitioning the execution of a long-running pro-
cess into units-of-execution [25, 42, 49, 66]. For example, BEEP [42]
proposes to partition long-running processes into execution units
based on the internal event loop found in applications. UlScope [66]
takes a different approach and partitions the application’s execution
based on GUI elements of an application. However, one limitation of
all existing whole-system provenance systems is the semantic gap
between system level semantics and browser-level semantics. To
bridge this gap, JSGraph [43] develops a customized browser that
tracks fine-grained information related to the provenance graph
in terms of browser-level semantics. Unlike MNEMOSYNE, JSGraph
requires extensive modifications to the browser itself, which makes
real-world deployment difficult.

Attack Detection. There has been a significant amount of work
that uses attack provenance to improve the efficiency of identi-
fying attacks in a postmortem fashion [26, 45, 52]. For example,
Holmes [52] relies on the attack kill chain [65] to identify attacks.
Priotracker [45] aims to improve the efficiency of postmortem anal-
ysis by automatically prioritizing abnormal causal dependencies
for enterprise security. Additionally, Nodoze [23] relies on causality
information to significantly reduce the number of false positives
generated by industry alert systems like Splunk [9]. In addition
to causality-based attack detection systems, there has also been
a significant amount of work related to detecting malicious activ-
ity on the web [13, 14, 17, 37, 44, 46, 56, 57, 64, 67]. For example,
Zozzle [17] detects JS-based malware by identifying syntax ele-
ments that are highly predictive of malware. Additionally, several
systems have been developed that aim to detect compromised web-
sites [13, 14, 44]. Most similar to MNEMOSYNE is Delta [13], which
aims to identify changes associated with malicious and benign be-
haviors in a website. However, unlike MNEMOSYNE, Delta’s goal
is to identify compromised webpages. MNEMOSYNE extends this
work by identify the impacts a compromised website had on an
organization. that routinely visited this website.

6 CONCLUSION

In this paper, we present MNEMOSYNE, a novel postmortem analysis
engine for analyzing sophisticated watering hole attacks. We com-
pleted an extensive evaluation on several real-world watering hole
attack scenarios and our results show that MNEMOSYNE is capable
of efficiently identifying the victims of a watering hole attack at an
enterprise environment.
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8 APPENDIX

8.1 Hyperparameter Optimization

The w controls the duration of the profiling phase, which is required to learn Do fife-
The proper setting of « varies between websites, and we found that the complexity
of the website and number of distinct URLSs visited on the website played the largest
role in determining how to set w. To determine a reasonable value to set w for a
website, we completed an experiment that determined the number of distinct URLs
required to visit in order to learn the profiling version for a website. To complete this
evaluation, we relied on a subset of the Categories dataset that included 548 websites.
This subset was chosen, since these sites generated a single domain version during
the data collection period. Next, we measured the minimal number of distinct URL
visits required to build the profiling domain version for each website category. We
found that, on average, the number was relatively low, only requiring 45 distinct URLs.
Therefore, the forensic analyst should set the value of w to the average number of
days necessary to observe 45 distinct URLs. We provided a detailed description of the
number of distinct URLSs required to visited for each category in Table 10

Namespace Events Received

Network responseReceived, requestWillBeSent

Page frameAttached, frameNavigated, downloadWillBegin, windowOpen, javascriptDialogOpen-
ing

Debugger scriptParsed

Target targetCreated, attachedToTarget, targetInfoChanged

Table 8: The Chromium DevTools Protocol MNEMOSYNE re-
lies upon to capture the necessary events to reconstruct so-
phisticated browser-based attacks.

Average of Versions Websites Unique Pages

Alexa 2.15 1000 120,245
Categories 2.11 830 278,177
News 4.33 39 19,824
Home 3.11 38 17,581
Shopping 2.86 90 69,410
Business 2.29 31 6,770
Kids and Teens 2.24 38 11,875
Politics 2.05 148 52,977
Regional 1.98 41 15,123
Science 1.94 33 5,912
Recreation 1.78 23 3,591
Health 1.78 55 7,049
Entertainment 1.75 40 7,765
Government 1.72 67 16,286
Sports 1.68 22 6,137
Computers 1.67 64 20,519
Society 1.64 33 5,999
Art 1.54 35 6,323
Games 1.52 33 5,036

Table 9: Statistics related to the collection of data for the be-
nign datasets.

Website Category Unique URL Count

50% Coverage  75% Coverage  95% Coverage  100% Coverage

Art 7 9 29 29
Business 2 10 24 24
Computers 2 5 28 29
Entertainment 1 12 31 34
Games 1 5 24 24
Government 4 8 23 24
Health 1 4 21 21
Home 4 11 44 49
Kids and Teens 6 14 50 53
News 3 7 28 33
Politics 2 13 60 66
Recreation 1 25 41 41
Regional 4 19 36 36
Science 5 9 36 37
Shopping 3 7 57 80
Society 2 12 44 53
Sports 8 19 57 57
Average 3 10 40 45

Table 10: The average number of distinct URLs required to
achieve 50%, 70%, 95%, and 100% coverage of the profiling do-
main version, Dy, fife-

Website Versions  Category
hxxps://www.yomiuri.co.jp 9 News
hxxps://www.urdupoint.com 8 News
hxxps://abcnews.go.com 7 News
hxxps://www.popsugar.com 7 News
hxxps://ccm.net 7 News
hxxps://www.commentcamarchenet 7 Computer
hxxps://ameblo.jp 7 News

Table 11: The websites from Alexa Top 1k that generated
more than 6 versions in one months. 6 out of 7 are News
websites.

. Graph Size
Attack Scenario (Nodes / Edges) VR(s) VP(s) ULA(s) Overall(s)
Malicious OAuth Access 9.2M / 16.1IM 419 3.6 246.2 291.7
Clickjacking 4.4M / 5.9M 6.3 3.1 13.2 22.6
Malicious Software Update 628K / 1.3M 7.0 2.5 44.3 53.8
Credential Harvesting 770K / 1.6M 14.7 1.1 175.7 191.5
Keylogging 209M/338M 1056  14.1 756.6 8763
Tabnabbing 6.7M / 15.0M 68.1 18.4 109.5 196.0
DriveBy 952K / 3.1M 12.1 3.4 62.5 78.0
Average 36.5 6.5 192.2 235.2

Table 12: A descriptive report of the runtime performance
of each of MNEMOSYNE’s submodules, Version Reconstruc-
tion (VR), Version Prioritization (VP), and User-level Analy-
sis (ULA) for each attack scenario.

List of Websites Used in Storage Evaluation

cnn.com, yahoo.com, amazon.com, espn.com, foxnews.com, irs.gov, abc.com,
washingtonpost.com, cbs.com, nytimes.com

Table 13: The 10 websites used for the Storage Overhead eval-
uation (§4.6) of MNEMOSYNE.




White-list of Websites Used in False Positive Analysis

cloudflare.com, cloudfront.net, doubleclick.net, facebook.net,
google.com, googleadservices.com, googleapis.com,
googlesyndication.com, googletagmanager.com, googletagservices.com,
hotjar.com, microsoft.com, outbrain.com, twimg.com, twitter.com

Table 14: The 15 websites used for the false positive analysis
of the version prioritization of MNEMOSYNE.
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Figure 6: Five-point-summary of crawled distinct URLs for
Alexa and Categories. Gray solid triangle represents mean
and orange bar is median. The extreme ends are maximum
and minimum, respectively.
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