
Android Malware Analysis: Leveraging Iterative Hybrid
Analysis to Avoid Anti-Analysis Techniques

Prahathess Rengasamy, Joey Allen

Outline

Motivation
Goals
Reflection
Design
Implementation Details
Demo
Evaluation
Conclusion

Motivation

Motivation

01 Current hybrid analysis tools use static analysis to identify events to trigger

using static analysis and passes them to dynamic analysis module to trigger

those malicious events.

02 Several behaviors go undetected. For example, if a malicious developer

leverages Java’s reflection Library to obfuscate sensitive API calls, the tools

would fail to identify this sensitive behavior ever occurred

03 we overcome the limitations by leveraging feedback loops to enhance the

natural synergy between static and dynamic analysis

Goals

Goals

Find reflection call targets (the type of the objects and methods being reflectively
created and invoked) through instrumenting and dynamically updating the analysis
parameters and trigger them at runtime during dynamic analysis

Reflection

Reflection

● A dynamic programming language feature

● Enable developers to create objects and invoke

methods by their names

● Used for
○ providing plugin and external library support
○ Invoke hidden APIs

● In addition to invoking them it is capable of :
○ Obtaining Method Objects
○ Method Parameters and Return Types
○ Invoking Methods using Method Object

Design

Design-Static Analysis Module

● The static analysis module in our architecture
will enhance the state-of-the-art in two ways.

○ Instrumentation Info extension
○ second extension will be a Call Graph

Extender
● Instrumentation Info extension

○ Instruments function calls and
instructions

○ Resolve reflection calls and parameters
● Call Graph Extender

○ Use the resolved reflection information to
extend the initial call-graph

○ With the extended call-graph the static
module has more paths to analyze and
resolves the application behavior better

Design-Dynamic Analysis Module

● Starting in Android 5.0, the Dalvik Virtual
Machine (DVM) was depreciated and replaced
with Android’s new runtime environment, ART

● But still Dalvik bytecode is used to as an
intermediate format and can be used to
instrument apps.

● Instrumentation info module used to provide
logging, such as the input parameters for Java
Reflection Methods during runtime.

● The logged information will be then passed back
to the static analysis module to allow for deeper
analysis.

Implementation Details

Implementation Details-Instrumentation Module

● Uses soot to Instrument the Android application APK

● Uses a interesting methods file to get API/function calls to instrument

● This does the following changes to the original function body.
○ Print class name, method name, permission
○ If argument is primitive type, log Argument value, else Argument type
○ If argument is non-primitive, call toString method, print toString()
○ If return value is not void, follow the similar procedure to insert expression after a unit.

● Insert the required logic before each API call invocation and after each API call

invocation.

● Since the application has been rewritten it signs the application using jarsigner
○ jarsigner -verbose -sigalg SHA1withDSA -digestalg SHA1 -keystore

../own-app/my-release-key.keystore $APK mykey -storepass 12341234

Implementation Details-Instrumentation Module

● Entrypoint methods Instrumented to log the parameters to resolve reflection calls

● Most significant reflective APIs that affect the static analysis are handled

○ Entry methods: Class.forName()

○ Member-instrospecting Methods: Method.getMethod(),

Method.getDeclaredMethod(), Method.getMethods(), and

Method.getDeclaredMethods()

○ Side-effect methods: Class.newInstance(), Method.invoke()

Implementation Details-Call Graph Module

● Uses wala and z3 constraint solver
● WALA provides support for basic static analysis, such as call graph generation, data flow analysis,

alias analysis, and an intermediate representation based on SSA.

● A traversal for each event handler is then performed to identify the event handlers that may lead
to a suspicious API invocation as defined by the user-specified suspicious behaviors. For each
suspicious behavior that is found, a suspicious call path is extracted, which contains the sequence
of method invocations from the event handler entry-point to the invocation of the suspicious
API.

● The reflection calls resolved are read from the config file and they are treated as suspicious calls .
● For every reflection call a targeted path analysis is done which does the following:

○ Finds the class that declares the method implements a framework interface or extends a framework class,
and the method itself must override a parent method in this interface or class;

○ Checks if the method is not called within the application code
○ Checks if the declaring class is instantiated at least once in the application code
○ A call graph is then generated using the event handlers as starting points for the code traversal

Demo

Evaluation
App Type Total Reflection

calls
Resolved Reflection
calls

Call-Graph Nodes Triggered Reflection
calls

SingleView-Basic function calling 5 5 2710 5

SingleView-Internal API Calls 7 7 2885 7

SingleView-Content Provider 12 12 2974 12

SingleView-Broadcast Receivers 15 15 3265 15

Multiple Views-SMS-Messenger 12 12 3117 12

Multiple Views-Passing values via
intents

10 10 2918 10

Multiple Views-Data Export from a
content provider(Contacts)

16 16 3273 16

Multiple Views-Data Export from a
content provider-UI(Contacts)

16 16 3534 16

Multiple Views -REST API calls 20 20 3860 20

Background Services-Socket
Events

21 11 4034 11

Evaluation-Droid Bench
App Type Reflection resolution Triggered events

Reflection 1-
Sensitive data is stored in a field of a
reflective class and directly read out
again and leaked

Full 2

Reflection 2-
Sensitive data is stored in a field of a
reflective class, read out again using a
method implemented in the "unknown"
class and leaked.

Full 3

Reflection 3-
Sensitive data is stored using a setter
in a reflective class, read back using a
getter and then leaked. No type
information on the target class is used.

Full 3

Reflection 4-
 Sensitive data is read using a function
in a reflective class and leaked using
another function in the same reflective
class.

Full 4

Conclusion

Reflection analysis for Android apps for discovering the behaviors of reflective calls was added
as a feature on top of Intellidroid.We advance the state-of-the-art reflection analysis for
Android apps, by:

 (1)Resolving reflection parameters

(2)Extending the call-graph to accommodate reflection methods

(3) demonstrating that resolved parameters can be used to generate constraints and triggered
during runtime

Future Work

1. A feature extraction module integrated into the instrumentation steps and call

graph steps will be a good add on

2. Stand alone analysis of background services will be useful direction to pursue

3. A machine learning component that gives a probability of maliciousness of an app

based on the data gathered from the tool is a good addition.

Thank You

Q & A

